Planck-cmb-allsky

Efficacy of galaxy catalogues for following up gravitational wave events

September 2025 • 2025JApA...46...68R

Authors • Roychowdhury, Tamojeet • Choudhary, Harsh • Bhalerao, Varun • Cook, David O. • Karambelkar, Viraj • Kasliwal, Mansi M. • Kumar, Harsh • More, Surhud • Waratkar, Gaurav

Abstract • The detection of gravitational waves (GW) by the LIGO-Virgo-KAGRA (LVK) network has opened up a new era in astrophysics. The identification of the electromagnetic counterparts of GW sources is crucial for multi-messenger astronomy, one way of which is to use galaxy catalogues to guide optical follow-up observations. In this paper, we test the utility of a galaxy-targeted approach with mass prioritised galaxy ranking for the ongoing LIGO O4 run. We have used the simulated results for the expected LIGO O4 events and the NED-LVS galaxy catalogue, and based our study on small field of view telescopes, specifically the GROWTH-India Telescope (GIT). With the increase in sensitivity of LIGO/Virgo in the ongoing observing run O4, the expected number of total detections have gone up, but most of these are also now poorly localised. We show that a larger volume covered in the same field-of-view (FoV) on the sky results in a large increase in the total number of galaxies in each FoV. A significant top-heaviness is observed in the mass-ranked list of galaxies, which still numbers a few thousand in most cases. At larger distances, such high numbers of deep follow-up observations are infeasible in most cases, rendering galaxy catalogues useful in limited cases. However, these are still useful at lower distances where LVK detectors are currently sensitive and where galaxy completeness is higher. We also explore the effect of mass-filling to account for galaxy catalogue incompleteness at large distances. If mass-filled probabilities are considered as the metric for ranking and coverage, we find that the conventional 2D probability search performs better than a 3D galaxy catalogue (without mass-filling) based search at distances larger than 300 Mpc (up to which NED-LVS is 70% complete), and using 3D mass times probability in each tile performs better for nearby events.

Links


IPAC Authors
(alphabetical)

David Cook

Associate Scientist