Planck-dust-allsky

Euclid preparation. I. The Euclid Wide Survey

June 2022 • 2022A&A...662A.112E

Authors • Euclid Collaboration • Scaramella, R. • Amiaux, J. • Mellier, Y. • Burigana, C. • Carvalho, C. S. • Cuillandre, J. -C. • Da Silva, A. • Derosa, A. • Dinis, J. • Maiorano, E. • Maris, M. • Tereno, I. • Laureijs, R. • Boenke, T. • Buenadicha, G. • Dupac, X. • Gaspar Venancio, L. M. • Gómez-Álvarez, P. • Hoar, J. • Lorenzo Alvarez, J. • Racca, G. D. • Saavedra-Criado, G. • Schwartz, J. • Vavrek, R. • Schirmer, M. • Aussel, H. • Azzollini, R. • Cardone, V. F. • Cropper, M. • Ealet, A. • Garilli, B. • Gillard, W. • Granett, B. R. • Guzzo, L. • Hoekstra, H. • Jahnke, K. • Kitching, T. • Maciaszek, T. • Meneghetti, M. • Miller, L. • Nakajima, R. • Niemi, S. M. • Pasian, F. • Percival, W. J. • Pottinger, S. • Sauvage, M. • Scodeggio, M. • Wachter, S. • Zacchei, A. • Aghanim, N. • Amara, A. • Auphan, T. • Auricchio, N. • Awan, S. • Balestra, A. • Bender, R. • Bodendorf, C. • Bonino, D. • Branchini, E. • Brau-Nogue, S. • Brescia, M. • Candini, G. P. • Capobianco, V. • Carbone, C. • Carlberg, R. G. • Carretero, J. • Casas, R. • Castander, F. J. • Castellano, M. • Cavuoti, S. • Cimatti, A. • Cledassou, R. • Congedo, G. • Conselice, C. J. • Conversi, L. • Copin, Y. • Corcione, L. • Costille, A. • Courbin, F. • Degaudenzi, H. • Douspis, M. • Dubath, F. • Duncan, C. A. J. • Dusini, S. • Farrens, S. • Ferriol, S. • Fosalba, P. • Fourmanoit, N. • Frailis, M. • Franceschi, E. • Franzetti, P. • Fumana, M. • Gillis, B. • Giocoli, C. • Grazian, A. • Grupp, F. • Haugan, S. V. H. • Holmes, W. • Hormuth, F. • Hudelot, P. • Kermiche, S. • Kiessling, A. • Kilbinger, M. • Kohley, R. • Kubik, B. • Kümmel, M. • Kunz, M. • Kurki-Suonio, H. • Lahav, O. • Ligori, S. • Lilje, P. B. • Lloro, I. • Mansutti, O. • Marggraf, O. • Markovic, K. • Marulli, F. • Massey, R. • Maurogordato, S. • Melchior, M. • Merlin, E. • Meylan, G. • Mohr, J. J. • Moresco, M. • Morin, B. • Moscardini, L. • Munari, E. • Nichol, R. C. • Padilla, C. • Paltani, S. • Peacock, J. • Pedersen, K. • Pettorino, V. • Pires, S. • Poncet, M. • Popa, L. • Pozzetti, L. • Raison, F. • Rebolo, R. • Rhodes, J. • Rix, H. -W. • Roncarelli, M. • Rossetti, E. • Saglia, R. • Schneider, P. • Schrabback, T. • Secroun, A. • Seidel, G. • Serrano, S. • Sirignano, C. • Sirri, G. • Skottfelt, J. • Stanco, L. • Starck, J. L. • Tallada-Crespí, P. • Tavagnacco, D. • Taylor, A. N. • Teplitz, H. I. • Toledo-Moreo, R. • Torradeflot, F. • Trifoglio, M. • Valentijn, E. A. • Valenziano, L. • Verdoes Kleijn, G. A. • Wang, Y. • Welikala, N. • Weller, J. • Wetzstein, M. • Zamorani, G. • Zoubian, J. • Andreon, S. • Baldi, M. • Bardelli, S. • Boucaud, A. • Camera, S. • Di Ferdinando, D. • Fabbian, G. • Farinelli, R. • Galeotta, S. • Graciá-Carpio, J. • Maino, D. • Medinaceli, E. • Mei, S. • Neissner, C. • Polenta, G. • Renzi, A. • Romelli, E. • Rosset, C. • Sureau, F. • Tenti, M. • Vassallo, T. • Zucca, E. • Baccigalupi, C. • Balaguera-Antolínez, A. • Battaglia, P. • Biviano, A. • Borgani, S. • Bozzo, E. • Cabanac, R. • Cappi, A. • Casas, S. • Castignani, G. • Colodro-Conde, C. • Coupon, J. • Courtois, H. M. • Cuby, J. • de la Torre, S. • Desai, S. • Dole, H. • Fabricius, M. • Farina, M. • Ferreira, P. G. • Finelli, F. • Flose-Reimberg, P. • Fotopoulou, S. • Ganga, K. • Gozaliasl, G. • Hook, I. M. • Keihanen, E. • Kirkpatrick, C. C. • Liebing, P. • Lindholm, V. • Mainetti, G. • Martinelli, M. • Martinet, N. • Maturi, M. • McCracken, H. J. • Metcalf, R. B. • Morgante, G. • Nightingale, J. • Nucita, A. • Patrizii, L. • Potter, D. • Riccio, G. • Sánchez, A. G. • Sapone, D. • Schewtschenko, J. A. • Schultheis, M. • Scottez, V. • Teyssier, R. • Tutusaus, I. • Valiviita, J. • Viel, M. • Vriend, W. • Whittaker, L.

Abstract • Euclid is a mission of the European Space Agency that is designed to constrain the properties of dark energy and gravity via weak gravitational lensing and galaxy clustering. It will carry out a wide area imaging and spectroscopy survey (the Euclid Wide Survey: EWS) in visible and near-infrared bands, covering approximately 15 000 deg2 of extragalactic sky in six years. The wide-field telescope and instruments are optimised for pristine point spread function and reduced stray light, producing very crisp images. This paper presents the building of the Euclid reference survey: the sequence of pointings of EWS, deep fields, and calibration fields, as well as spacecraft movements followed by Euclid as it operates in a step-and-stare mode from its orbit around the Lagrange point L2. Each EWS pointing has four dithered frames; we simulated the dither pattern at the pixel level to analyse the effective coverage. We used up-to-date models for the sky background to define the Euclid region-of-interest (RoI). The building of the reference survey is highly constrained from calibration cadences, spacecraft constraints, and background levels; synergies with ground-based coverage were also considered. Via purposely built software, we first generated a schedule for the calibrations and deep fields observations. On a second stage, the RoI was tiled and scheduled with EWS observations, using an algorithm optimised to prioritise the best sky areas, produce a compact coverage, and ensure thermal stability. The result is the optimised reference survey RSD_2021A, which fulfils all constraints and is a good proxy for the final solution. The current EWS covers ≈14 500 deg2. The limiting AB magnitudes (5σ point-like source) achieved in its footprint are estimated to be 26.2 (visible band IE) and 24.5 (for near infrared bands YE, JE, HE); for spectroscopy, the Hα line flux limit is 2 × 10−16 erg−1 cm−2 s−1 at 1600 nm; and for diffuse emission, the surface brightness limits are 29.8 (visible band) and 28.4 (near infrared bands) mag arcsec−2.

Links


IPAC Authors
(alphabetical)

Harry_teplitz

Harry Teplitz

Senior Scientist


Yun_may2018

Yun Wang

Senior Scientist