SPICA and the Chemical Evolution of Galaxies: The Rise of Metals and Dust

November 2017 • 2017PASA...34...53F

Authors • Fernández-Ontiveros, J. A. • Armus, L. • Baes, M. • Bernard-Salas, J. • Bolatto, A. D. • Braine, J. • Ciesla, L. • De Looze, I. • Egami, E. • Fischer, J. • Giard, M. • González-Alfonso, E. • Granato, G. L. • Gruppioni, C. • Imanishi, M. • Ishihara, D. • Kaneda, H. • Madden, S. • Malkan, M. • Matsuhara, H. • Matsuura, M. • Nagao, T. • Najarro, F. • Nakagawa, T. • Onaka, T. • Oyabu, S. • Pereira-Santaella, M. • Pérez Fournon, I. • Roelfsema, P. • Santini, P. • Silva, L. • Smith, J. -D. T. • Spinoglio, L. • van der Tak, F. • Wada, T. • Wu, R.

Abstract • The physical processes driving the chemical evolution of galaxies in the last 11Gyr cannot be understood without directly probing the dust-obscured phase of star-forming galaxies and active galactic nuclei. This phase, hidden to optical tracers, represents the bulk of the star formation and black hole accretion activity in galaxies at 1 < z < 3. Spectroscopic observations with a cryogenic infrared observatory like SPICA, will be sensitive enough to peer through the dust-obscured regions of galaxies and access the rest-frame mid- to far-infrared range in galaxies at high-z. This wavelength range contains a unique suite of spectral lines and dust features that serve as proxies for the abundances of heavy elements and the dust composition, providing tracers with a feeble response to both extinction and temperature. In this work, we investigate how SPICA observations could be exploited to understand key aspects in the chemical evolution of galaxies: the assembly of nearby galaxies based on the spatial distribution of heavy element abundances, the global content of metals in galaxies reaching the knee of the luminosity function up to z 3, and the dust composition of galaxies at high-z. Possible synergies with facilities available in the late 2020s are also discussed.


IPAC Authors


Lee Armus

Senior Scientist