Forming Chondrites in a Solar Nebula with Magnetically Induced Turbulence

March 2016 • 2016ApJ...820L..12H

Authors • Hasegawa, Yasuhiro • Turner, Neal J. • Masiero, Joseph • Wakita, Shigeru • Matsumoto, Yuji • Oshino, Shoichi

Abstract • Chondritic meteorites provide valuable opportunities to investigate the origins of the solar system. We explore impact jetting as a mechanism of chondrule formation and subsequent pebble accretion as a mechanism of accreting chondrules onto parent bodies of chondrites, and investigate how these two processes can account for the currently available meteoritic data. We find that when the solar nebula is ≤5 times more massive than the minimum-mass solar nebula at a ≃ 2-3 au and parent bodies of chondrites are ≤1024 g (≤500 km in radius) in the solar nebula, impact jetting and subsequent pebble accretion can reproduce a number of properties of the meteoritic data. The properties include the present asteroid belt mass, the formation timescale of chondrules, and the magnetic field strength of the nebula derived from chondrules in Semarkona. Since this scenario requires a first generation of planetesimals that trigger impact jetting and serve as parent bodies to accrete chondrules, the upper limit of parent bodies’ masses leads to the following implications: primordial asteroids that were originally ≥1024 g in mass were unlikely to contain chondrules, while less massive primordial asteroids likely had a chondrule-rich surface layer. The scenario developed from impact jetting and pebble accretion can therefore provide new insights into the origins of the solar system.


IPAC Authors


Joe Masiero

Associate Scientist