A Spitzer/IRAC Measure of the Zodiacal Light

July 2012 • 2012ApJ...754...53K

Authors • Krick, Jessica E. • Glaccum, William J. • Carey, Sean J. • Lowrance, Patrick J. • Surace, Jason A. • Ingalls, James G. • Hora, Joseph L. • Reach, William T.

Abstract • The dominant non-instrumental background source for space-based infrared observatories is the zodiacal light (ZL). We present Spitzer Infrared Array Camera (IRAC) measurements of the ZL at 3.6, 4.5, 5.8, and 8.0 μm, taken as part of the instrument calibrations. We measure the changing surface brightness levels in approximately weekly IRAC observations near the north ecliptic pole over a period of roughly 8.5 years. This long time baseline is crucial for measuring the annual sinusoidal variation in the signal levels due to the tilt of the dust disk with respect to the ecliptic, which is the true signal of the ZL. This is compared to both Cosmic Background Explorer Diffuse Infrared Background Experiment data and a ZL model based thereon. Our data show a few-percent discrepancy from the Kelsall et al. model including a potential warping of the interplanetary dust disk and a previously detected overdensity in the dust cloud directly behind the Earth in its orbit. Accurate knowledge of the ZL is important for both extragalactic and Galactic astronomy including measurements of the cosmic infrared background, absolute measures of extended sources, and comparison to extrasolar interplanetary dust models. IRAC data can be used to further inform and test future ZL models.


IPAC Authors

Sean Carey

Senior Scientist

Jim Ingalls

Associate Scientist


Jessica Krick

Associate Scientist


Patrick Lowrance

Senior Scientist