The disappearances of six supernova progenitors

February 2023 • 2023MNRAS.519..471V

Authors • Van Dyk, Schuyler D. • de Graw, Asia • Baer-Way, Raphael • Zheng, WeiKang • Filippenko, Alexei V. • Fox, Ori D. • Smith, Nathan • Brink, Thomas G. • de Jaeger, Thomas • Kelly, Patrick L. • Vasylyev, Sergiy S.

Abstract • As part of a larger completed Hubble Space Telescope (HST) Snapshot program, we observed the sites of six nearby core-collapse supernovae (SNe) at high spatial resolution: SN 2012A, SN 2013ej, SN 2016gkg, SN 2017eaw, SN 2018zd, and SN 2018aoq. These observations were all conducted at sufficiently late times in each SN's evolution to demonstrate that the massive-star progenitor candidate identified in each case in pre-explosion imaging data had indeed vanished and was therefore most likely the actual progenitor. However, we have determined for SN 2016gkg that the progenitor candidate was most likely a blend of two objects: the progenitor, which itself has likely vanished, and another closely neighbouring star. We thus provide a revised estimate of that progenitor's properties: a binary system with a hydrogen-stripped primary star at explosion with effective temperature ≈6300-7900 K, bolometric luminosity ≈104.65 L, radius ≈118-154 R, and initial mass 9.5-11 M. Utilizing late-time additional archival HST data nearly contemporaneous with our Snapshots, we also show that SN 2017eaw had a luminous ultraviolet excess, which is best explained as a result of ongoing interaction of the SN shock with pre-existing circumstellar matter. We offer the caveat, particularly in the case of SN 2013ej, that obscuration from SN dust may be compromising our conclusions. This sample adds to the growing list of confirmed or likely core-collapse SN progenitors.


IPAC Authors

Schuyler Van Dyk

Senior Scientist