IPAC, located on the Caltech campus, is not under direct threat from local fires at this time, though it is subject to the effects of strong winds and poor air quality. Many members of the IPAC community have been impacted by these events, and IPAC will follow Caltech guidance on closures and safe operations. For more information, visit Caltech’s Emergency Updates page at http://www.caltech.edu/emergency.
2mass-planck-allsky

Early Results from GLASS-JWST. VII. Evidence for Lensed, Gravitationally Bound Protoglobular Clusters at z = 4 in the Hubble Frontier Field A2744

December 2022 • 2022ApJ...940L..53V

Authors • Vanzella, E. • Castellano, M. • Bergamini, P. • Treu, T. • Mercurio, A. • Scarlata, C. • Rosati, P. • Grillo, C. • Acebron, A. • Caminha, G. B. • Nonino, M. • Nanayakkara, T. • Roberts-Borsani, G. • Bradac, M. • Wang, X. • Brammer, G. • Strait, V. • Vulcani, B. • Meštrić, U. • Meneghetti, M. • Calura, F. • Henry, Alaina • Zanella, A. • Trenti, M. • Boyett, K. • Morishita, T. • Calabrò, A. • Glazebrook, K. • Marchesini, D. • Birrer, S. • Yang, L. • Jones, T.

Abstract • We investigate the blue and optical rest-frame sizes (λ ≃ 2300-4000 Å) of three compact star-forming regions in a galaxy at z = 4 strongly lensed (×30, ×45, and ×100) by the Hubble Frontier Field galaxy cluster A2744 using GLASS-ERS James Webb Space Telescope (JWST)/NIRISS imaging at 1.15 μm, 1.50 μm, and 2.0 μm with a point-spread function ≲0.″1. In particular, the Balmer break is probed in detail for all multiply imaged sources of the system. With ages of a few tens of Myr, stellar masses in the range (0.7-4.0) ×106 M and optical/ultraviolet effective radii spanning the interval 3 < R eff < 20 pc, such objects are currently the highest-redshift (spectroscopically confirmed) gravitationally bound young massive star clusters (YMCs), with stellar mass surface densities resembling those of local globular clusters. Optical (4000 Å, JWST-based) and ultraviolet (1600 Å, Hubble Space Telescope-based) sizes are fully compatible. The contribution to the ultraviolet underlying continuum emission (1600 Å) is ~30%, which decreases by a factor of 2 in the optical for two of the YMCs (~4000 Å rest-frame), reflecting the young ages (<30 Myr) inferred from the spectral energy distribution fitting and supported by the presence of high-ionization lines secured with the Very Large Telescope/MUSE. Such bursty forming regions enhance the specific star formation rate of the galaxy, which is ≃10 Gyr-1. This galaxy would be among the extreme analogs observed in the local universe having a high star formation rate surface density and a high occurrence of massive stellar clusters in formation. *Based on observations collected with JWST under the ERS program 1324 (PI T. Treu).

Links


IPAC Authors
(alphabetical)

Profile

Takahiro Morishita

Assistant Scientist