October
2022
•
2022A&A...666A.200V
Authors
•
van Mierlo, S. E.
•
Caputi, K. I.
•
Ashby, M.
•
Atek, H.
•
Bolzonella, M.
•
Bowler, R. A. A.
•
Brammer, G.
•
Conselice, C. J.
•
Cuby, J.
•
Dayal, P.
•
Díaz-Sánchez, A.
•
Finkelstein, S. L.
•
Hoekstra, H.
•
Humphrey, A.
•
Ilbert, O.
•
McCracken, H. J.
•
Milvang-Jensen, B.
•
Oesch, P. A.
•
Pello, R.
•
Rodighiero, G.
•
Schirmer, M.
•
Toft, S.
•
Weaver, J. R.
•
Wilkins, S. M.
•
Willott, C. J.
•
Zamorani, G.
•
Amara, A.
•
Auricchio, N.
•
Baldi, M.
•
Bender, R.
•
Bodendorf, C.
•
Bonino, D.
•
Branchini, E.
•
Brescia, M.
•
Brinchmann, J.
•
Camera, S.
•
Capobianco, V.
•
Carbone, C.
•
Carretero, J.
•
Castellano, M.
•
Cavuoti, S.
•
Cimatti, A.
•
Cledassou, R.
•
Congedo, G.
•
Conversi, L.
•
Copin, Y.
•
Corcione, L.
•
Courbin, F.
•
Da Silva, A.
•
Degaudenzi, H.
•
Douspis, M.
•
Dubath, F.
•
Dupac, X.
•
Dusini, S.
•
Farrens, S.
•
Ferriol, S.
•
Frailis, M.
•
Franceschi, E.
•
Franzetti, P.
•
Fumana, M.
•
Galeotta, S.
•
Garilli, B.
•
Gillard, W.
•
Gillis, B.
•
Giocoli, C.
•
Grazian, A.
•
Grupp, F.
•
Haugan, S. V. H.
•
Holmes, W.
•
Hormuth, F.
•
Hornstrup, A.
•
Jahnke, K.
•
Kümmel, M.
•
Kiessling, A.
•
Kilbinger, M.
•
Kitching, T.
•
Kohley, R.
•
Kunz, M.
•
Kurki-Suonio, H.
•
Laureijs, R.
•
Ligori, S.
•
Lilje, P. B.
•
Lloro, I.
•
Maiorano, E.
•
Mansutti, O.
•
Marggraf, O.
•
Markovic, K.
•
Marulli, F.
•
Massey, R.
•
Maurogordato, S.
•
Medinaceli, E.
•
Meneghetti, M.
•
Merlin, E.
•
Meylan, G.
•
Moresco, M.
•
Moscardini, L.
•
Munari, E.
•
Niemi, S. M.
•
Padilla, C.
•
Paltani, S.
•
Pasian, F.
•
Pedersen, K.
•
Pettorino, V.
•
Pires, S.
•
Poncet, M.
•
Popa, L.
•
Pozzetti, L.
•
Raison, F.
•
Renzi, A.
•
Rhodes, J.
•
Riccio, G.
•
Romelli, E.
•
Rossetti, E.
•
Saglia, R.
•
Sapone, D.
•
Sartoris, B.
•
Schneider, P.
•
Secroun, A.
•
Sirignano, C.
•
Sirri, G.
•
Stanco, L.
•
Starck, J. -L.
•
Surace, C.
•
Tallada-Crespí, P.
•
Taylor, A. N.
•
Tereno, I.
•
Toledo-Moreo, R.
•
Torradeflot, F.
•
Tutusaus, I.
•
Valentijn, E. A.
•
Valenziano, L.
•
Vassallo, T.
•
Wang, Y.
•
Zacchei, A.
•
Zoubian, J.
•
Andreon, S.
•
Bardelli, S.
•
Boucaud, A.
•
Graciá-Carpio, J.
•
Maino, D.
•
Mauri, N.
•
Mei, S.
•
Sureau, F.
•
Zucca, E.
•
Aussel, H.
•
Baccigalupi, C.
•
Balaguera-Antolínez, A.
•
Biviano, A.
•
Blanchard, A.
•
Borgani, S.
•
Bozzo, E.
•
Burigana, C.
•
Cabanac, R.
•
Calura, F.
•
Cappi, A.
•
Carvalho, C. S.
•
Casas, S.
•
Castignani, G.
•
Colodro-Conde, C.
•
Cooray, A. R.
•
Coupon, J.
•
Courtois, H. M.
•
Crocce, M.
•
Cucciati, O.
•
Davini, S.
•
Dole, H.
•
Escartin, J. A.
•
Escoffier, S.
•
Fabricius, M.
•
Farina, M.
•
Ganga, K.
•
García-Bellido, J.
•
George, K.
•
Giacomini, F.
•
Gozaliasl, G.
•
Gwyn, S.
•
Hook, I.
•
Huertas-Company, M.
•
Kansal, V.
•
Kashlinsky, A.
•
Keihanen, E.
•
Kirkpatrick, C. C.
•
Lindholm, V.
•
Maoli, R.
•
Martinelli, M.
•
Martinet, N.
•
Maturi, M.
•
Metcalf, R. B.
•
Monaco, P.
•
Morgante, G.
•
Nucita, A. A.
•
Patrizii, L.
•
Peel, A.
•
Pollack, J.
•
Popa, V.
•
Porciani, C.
•
Potter, D.
•
Reimberg, P.
•
Sánchez, A. G.
•
Scottez, V.
•
Sefusatti, E.
•
Stadel, J.
•
Teyssier, R.
•
Valiviita, J.
•
Viel, M.
Abstract
•
Context. The Euclid mission is expected to discover thousands of z > 6 galaxies in three deep fields, which together will cover a ∼50 deg2 area. However, the limited number of Euclid bands (four) and the low availability of ancillary data could make the identification of z > 6 galaxies challenging.
Aims: In this work we assess the degree of contamination by intermediate-redshift galaxies (z = 1-5.8) expected for z > 6 galaxies within the Euclid Deep Survey.
Methods: This study is based on ∼176 000 real galaxies at z = 1-8 in a ∼0.7 deg2 area selected from the UltraVISTA ultra-deep survey and ∼96 000 mock galaxies with 25.3 ≤ H < 27.0, which altogether cover the range of magnitudes to be probed in the Euclid Deep Survey. We simulate Euclid and ancillary photometry from fiducial 28-band photometry and fit spectral energy distributions to various combinations of these simulated data.
Results: We demonstrate that identifying z > 6 galaxies with Euclid data alone will be very effective, with a z > 6 recovery of 91% (88%) for bright (faint) galaxies. For the UltraVISTA-like bright sample, the percentage of z = 1-5.8 contaminants amongst apparent z > 6 galaxies as observed with Euclid alone is 18%, which is reduced to 4% (13%) by including ultra-deep Rubin (Spitzer) photometry. Conversely, for the faint mock sample, the contamination fraction with Euclid alone is considerably higher at 39%, and minimised to 7% when including ultra-deep Rubin data. For UltraVISTA-like bright galaxies, we find that Euclid (IE − YE) > 2.8 and (YE − JE) < 1.4 colour criteria can separate contaminants from true z > 6 galaxies, although these are applicable to only 54% of the contaminants as many have unconstrained (IE − YE) colours. In the best scenario, these cuts reduce the contamination fraction to 1% whilst preserving 81% of the fiducial z > 6 sample. For the faint mock sample, colour cuts are infeasible; we find instead that a 5σ detection threshold requirement in at least one of the Euclid near-infrared bands reduces the contamination fraction to 25%.
Links