October
2022
•
2022A&A...666A.129K
Authors
•
Keihänen, E.
•
Lindholm, V.
•
Monaco, P.
•
Blot, L.
•
Carbone, C.
•
Kiiveri, K.
•
Sánchez, A. G.
•
Viitanen, A.
•
Valiviita, J.
•
Amara, A.
•
Auricchio, N.
•
Baldi, M.
•
Bonino, D.
•
Branchini, E.
•
Brescia, M.
•
Brinchmann, J.
•
Camera, S.
•
Capobianco, V.
•
Carretero, J.
•
Castellano, M.
•
Cavuoti, S.
•
Cimatti, A.
•
Cledassou, R.
•
Congedo, G.
•
Conversi, L.
•
Copin, Y.
•
Corcione, L.
•
Cropper, M.
•
Da Silva, A.
•
Degaudenzi, H.
•
Douspis, M.
•
Dubath, F.
•
Duncan, C. A. J.
•
Dupac, X.
•
Dusini, S.
•
Ealet, A.
•
Farrens, S.
•
Ferriol, S.
•
Frailis, M.
•
Franceschi, E.
•
Fumana, M.
•
Gillis, B.
•
Giocoli, C.
•
Grazian, A.
•
Grupp, F.
•
Guzzo, L.
•
Haugan, S. V. H.
•
Hoekstra, H.
•
Holmes, W.
•
Hormuth, F.
•
Jahnke, K.
•
Kümmel, M.
•
Kermiche, S.
•
Kiessling, A.
•
Kitching, T.
•
Kunz, M.
•
Kurki-Suonio, H.
•
Ligori, S.
•
Lilje, P. B.
•
Lloro, I.
•
Maiorano, E.
•
Mansutti, O.
•
Marggraf, O.
•
Marulli, F.
•
Massey, R.
•
Melchior, M.
•
Meneghetti, M.
•
Meylan, G.
•
Moresco, M.
•
Morin, B.
•
Moscardini, L.
•
Munari, E.
•
Niemi, S. M.
•
Padilla, C.
•
Paltani, S.
•
Pasian, F.
•
Pedersen, K.
•
Pettorino, V.
•
Pires, S.
•
Polenta, G.
•
Poncet, M.
•
Popa, L.
•
Raison, F.
•
Renzi, A.
•
Rhodes, J.
•
Romelli, E.
•
Saglia, R.
•
Sartoris, B.
•
Schneider, P.
•
Schrabback, T.
•
Secroun, A.
•
Seidel, G.
•
Sirignano, C.
•
Sirri, G.
•
Stanco, L.
•
Surace, C.
•
Tallada-Crespí, P.
•
Tavagnacco, D.
•
Taylor, A. N.
•
Tereno, I.
•
Toledo-Moreo, R.
•
Torradeflot, F.
•
Valentijn, E. A.
•
Valenziano, L.
•
Vassallo, T.
•
Wang, Y.
•
Weller, J.
•
Zamorani, G.
•
Zoubian, J.
•
Andreon, S.
•
Maino, D.
•
de la Torre, S.
Abstract
•
We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy-Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and evaluating their sample covariance. With large random catalog sizes (random-to-data objects' ratio M ≫ 1) the computational cost of the standard method is dominated by that of counting the data-random and random-random pairs, while the uncertainty of the estimate is dominated by that of data-data pairs. We present a method called Linear Construction (LC), where the covariance is estimated for small random catalogs with a size of M = 1 and M = 2, and the covariance for arbitrary M is constructed as a linear combination of the two. We show that the LC covariance estimate is unbiased. We validated the method with PINOCCHIO simulations in the range r = 20 − 200 h−1 Mpc. With M = 50 and with 2 h−1 Mpc bins, the theoretical speedup of the method is a factor of 14. We discuss the impact on the precision matrix and parameter estimation, and present a formula for the covariance of covariance.
This paper is published on behalf of the Euclid Consortium.
Links