IPAC, located on the Caltech campus, is not under direct threat from local fires at this time, though it is subject to the effects of strong winds and poor air quality. Many members of the IPAC community have been impacted by these events, and IPAC will follow Caltech guidance on closures and safe operations. For more information, visit Caltech’s Emergency Updates page at http://www.caltech.edu/emergency.
Iras-allsky

Euclid: Fast two-point correlation function covariance through linear construction

October 2022 • 2022A&A...666A.129K

Authors • Keihänen, E. • Lindholm, V. • Monaco, P. • Blot, L. • Carbone, C. • Kiiveri, K. • Sánchez, A. G. • Viitanen, A. • Valiviita, J. • Amara, A. • Auricchio, N. • Baldi, M. • Bonino, D. • Branchini, E. • Brescia, M. • Brinchmann, J. • Camera, S. • Capobianco, V. • Carretero, J. • Castellano, M. • Cavuoti, S. • Cimatti, A. • Cledassou, R. • Congedo, G. • Conversi, L. • Copin, Y. • Corcione, L. • Cropper, M. • Da Silva, A. • Degaudenzi, H. • Douspis, M. • Dubath, F. • Duncan, C. A. J. • Dupac, X. • Dusini, S. • Ealet, A. • Farrens, S. • Ferriol, S. • Frailis, M. • Franceschi, E. • Fumana, M. • Gillis, B. • Giocoli, C. • Grazian, A. • Grupp, F. • Guzzo, L. • Haugan, S. V. H. • Hoekstra, H. • Holmes, W. • Hormuth, F. • Jahnke, K. • Kümmel, M. • Kermiche, S. • Kiessling, A. • Kitching, T. • Kunz, M. • Kurki-Suonio, H. • Ligori, S. • Lilje, P. B. • Lloro, I. • Maiorano, E. • Mansutti, O. • Marggraf, O. • Marulli, F. • Massey, R. • Melchior, M. • Meneghetti, M. • Meylan, G. • Moresco, M. • Morin, B. • Moscardini, L. • Munari, E. • Niemi, S. M. • Padilla, C. • Paltani, S. • Pasian, F. • Pedersen, K. • Pettorino, V. • Pires, S. • Polenta, G. • Poncet, M. • Popa, L. • Raison, F. • Renzi, A. • Rhodes, J. • Romelli, E. • Saglia, R. • Sartoris, B. • Schneider, P. • Schrabback, T. • Secroun, A. • Seidel, G. • Sirignano, C. • Sirri, G. • Stanco, L. • Surace, C. • Tallada-Crespí, P. • Tavagnacco, D. • Taylor, A. N. • Tereno, I. • Toledo-Moreo, R. • Torradeflot, F. • Valentijn, E. A. • Valenziano, L. • Vassallo, T. • Wang, Y. • Weller, J. • Zamorani, G. • Zoubian, J. • Andreon, S. • Maino, D. • de la Torre, S.

Abstract • We present a method for fast evaluation of the covariance matrix for a two-point galaxy correlation function (2PCF) measured with the Landy-Szalay estimator. The standard way of evaluating the covariance matrix consists in running the estimator on a large number of mock catalogs, and evaluating their sample covariance. With large random catalog sizes (random-to-data objects' ratio M ≫ 1) the computational cost of the standard method is dominated by that of counting the data-random and random-random pairs, while the uncertainty of the estimate is dominated by that of data-data pairs. We present a method called Linear Construction (LC), where the covariance is estimated for small random catalogs with a size of M = 1 and M = 2, and the covariance for arbitrary M is constructed as a linear combination of the two. We show that the LC covariance estimate is unbiased. We validated the method with PINOCCHIO simulations in the range r = 20 − 200 h−1 Mpc. With M = 50 and with 2 h−1 Mpc bins, the theoretical speedup of the method is a factor of 14. We discuss the impact on the precision matrix and parameter estimation, and present a formula for the covariance of covariance.

This paper is published on behalf of the Euclid Consortium.

Links


IPAC Authors
(alphabetical)

Yun_may2018

Yun Wang

Senior Scientist