IPAC, located on the Caltech campus, is not under direct threat from local fires at this time, though it is subject to the effects of strong winds and poor air quality. Many members of the IPAC community have been impacted by these events, and IPAC will follow Caltech guidance on closures and safe operations. For more information, visit Caltech’s Emergency Updates page at http://www.caltech.edu/emergency.
2mass-allsky

The Brown Dwarf Kinematics Project (BDKP). V. Radial and Rotational Velocities of T Dwarfs from Keck/NIRSPEC High-resolution Spectroscopy

December 2021 • 2021ApJS..257...45H

Authors • Hsu, Chih-Chun • Burgasser, Adam J. • Theissen, Christopher A. • Gelino, Christopher R. • Birky, Jessica L. • Diamant, Sharon J. M. • Bardalez Gagliuffi, Daniella C. • Aganze, Christian • Blake, Cullen H. • Faherty, Jacqueline K.

Abstract • We report multiepoch radial velocities, rotational velocities, and atmospheric parameters for 37 T-type brown dwarfs observed with Keck/NIRSPEC. Using a Markov Chain Monte Carlo forward-modeling method, we achieve median precisions of 0.5 and 0.9 km s-1 for radial and rotational velocities, respectively. All of the T dwarfs in our sample are thin-disk brown dwarfs. We confirm previously reported moving group associations for four T dwarfs. However, the lack of spectral indicators of youth in two of these sources suggests that these are chance alignments. We confirm two previously unresolved binary candidates, the T0+T4.5 2MASS J11061197+2754225 and the L7+T3.5 2MASS J21265916+7617440, with orbital periods of 4 and 12 yr, respectively. We find a kinematic age of 3.5 ± 0.3 Gyr for local T dwarfs, consistent with nearby late M dwarfs (4.1 ± 0.3 Gyr). Removal of thick-disk L dwarfs in the local ultracool dwarf sample gives a similar age for L dwarfs (4.2 ± 0.3 Gyr), largely resolving the local L dwarf age anomaly. The kinematic ages of local late M, L, and T dwarfs can be accurately reproduced with population simulations incorporating standard assumptions of the mass function, star formation rate, and brown dwarf evolutionary models. A kinematic dispersion break is found at the L4-L6 subtypes, likely reflecting the terminus of the stellar main sequence. We provide a compilation of precise radial velocities for 172 late M, L, and T dwarfs within ~20 pc of the Sun.

Links


IPAC Authors
(alphabetical)

Chris Gelino

Associate Scientist