2mass-allsky

SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart

October 2020 • 2020ApJ...902...86H

Authors • Ho, Anna Y. Q. • Kulkarni, S. R. • Perley, Daniel A. • Cenko, S. Bradley • Corsi, Alessandra • Schulze, Steve • Lunnan, Ragnhild • Sollerman, Jesper • Gal-Yam, Avishay • Anand, Shreya • Barbarino, Cristina • Bellm, Eric C. • Bruch, Rachel J. • Burns, Eric • De, Kishalay • Dekany, Richard • Delacroix, Alexandre • Duev, Dmitry A. • Frederiks, Dmitry D. • Fremling, Christoffer • Goldstein, Daniel A. • Golkhou, V. Zach • Graham, Matthew J. • Hale, David • Kasliwal, Mansi M. • Kupfer, Thomas • Laher, Russ R. • Martikainen, Julia • Masci, Frank J. • Neill, James D. • Ridnaia, Anna • Rusholme, Ben • Savchenko, Volodymyr • Shupe, David L. • Soumagnac, Maayane T. • Strotjohann, Nora L. • Svinkin, Dmitry S. • Taggart, Kirsty • Tartaglia, Leonardo • Yan, Lin • Zolkower, Jeffry

Abstract • We present optical, radio, and X-ray observations of SN 2020bvc (=ASASSN-20bs, ZTF 20aalxlis), a nearby ( $z=0.0252;$ d = 114 Mpc) broad-line (BL) Type Ic supernova (SN) and the first double-peaked Ic-BL discovered without a gamma-ray burst (GRB) trigger. Our observations show that SN 2020bvc shares several properties in common with the Ic-BL SN 2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio luminosity ( ${L}_{\mathrm{radio}}\approx {10}^{37}\,\mathrm{erg}\,{{\rm{s}}}^{-1}$ ) is brighter than ordinary core-collapse SNe but fainter than LLGRB SNe such as SN 1998bw (associated with LLGRB 980425). We model our VLA observations (spanning 13-43 days) as synchrotron emission from a mildly relativistic (v ≳ 0.3c) forward shock. Second, with Swift and Chandra, we detect X-ray emission (LX ≈ 1041 erg ${{\rm{s}}}^{-1}$ ) that is not naturally explained as inverse Compton emission or part of the same synchrotron spectrum as the radio emission. Third, high-cadence (6× night-1) data from the Zwicky Transient Facility (ZTF) show a double-peaked optical light curve, the first peak from shock cooling of extended low-mass material (mass ${M}_{e}\lt {10}^{-2}\,{M}_{\odot }$ at radius Re > 1012 cm) and the second peak from the radioactive decay of ${}^{56}\mathrm{Ni}$ . SN 2020bvc is the first double-peaked Ic-BL SN discovered without a GRB trigger, so it is noteworthy that it shows X-ray and radio emission similar to LLGRB SNe. For four of the five other nearby (z ≲ 0.05) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN 2006aj and SN 2020bvc, i.e., that lasts ≈1 day and reaches a peak luminosity M ≈ -18. Follow-up X-ray and radio observations of Ic-BL SNe with well-sampled early optical light curves will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.

Links


IPAC Authors
(alphabetical)

Frank Masci

Senior Scientist


Ben Rusholme

Chief Engineer


Dave Shupe

Senior Scientist