IPAC, located on the Caltech campus, is not under direct threat from local fires at this time, though it is subject to the effects of strong winds and poor air quality. Many members of the IPAC community have been impacted by these events, and IPAC will follow Caltech guidance on closures and safe operations. For more information, visit Caltech’s Emergency Updates page at http://www.caltech.edu/emergency.
2mass-allsky

Spectroscopic Confirmation of a Coma Cluster Progenitor at z ∼ 2.2

March 2020 • 2020ApJ...892....8D

Authors • Darvish, Behnam • Scoville, Nick Z. • Martin, Christopher • Sobral, David • Mobasher, Bahram • Rettura, Alessandro • Matthee, Jorryt • Capak, Peter • Chartab, Nima • Hemmati, Shoubaneh • Masters, Daniel • Nayyeri, Hooshang • O'Sullivan, Donal • Paulino-Afonso, Ana • Sattari, Zahra • Shahidi, Abtin • Salvato, Mara • Lemaux, Brian C. • Fèvre, Olivier Le • Cucciati, Olga

Abstract • We report the spectroscopic confirmation of a new protocluster in the COSMOS field at z ∼ 2.2, COSMOS Cluster 2.2 (CC2.2), originally identified as an overdensity of narrowband selected Hα emitting candidates. With only two masks of Keck/MOSFIRE near-IR spectroscopy in both H (∼1.47-1.81 μm) and K (∼1.92-2.40 μm) bands (∼1.5 hr each), we confirm 35 unique protocluster members with at least two emission lines detected with S/N > 3. Combined with 12 extra members from the zCOSMOS-deep spectroscopic survey (47 in total), we estimate a mean redshift and a line-of-sight velocity dispersion of zmean = 2.23224 ± 0.00101 and σlos = 645 ± 69 km s-1 for this protocluster, respectively. Assuming virialization and spherical symmetry for the system, we estimate a total mass of Mvir ∼ (1-2) ×1014M for the structure. We evaluate a number density enhancement of δg ∼ 7 for this system and we argue that the structure is likely not fully virialized at z ∼ 2.2. However, in a spherical collapse model, δg is expected to grow to a linear matter enhancement of ∼1.9 by z = 0, exceeding the collapse threshold of 1.69, and leading to a fully collapsed and virialized Coma-type structure with a total mass of Mdyn(z = 0) ∼ 9.2 × 1014M by now. This observationally efficient confirmation suggests that large narrowband emission-line galaxy surveys, when combined with ancillary photometric data, can be used to effectively trace the large-scale structure and protoclusters at a time when they are mostly dominated by star-forming galaxies.

Links


IPAC Authors
(alphabetical)

Elise_furlan

Elise Furlan

Associate Scientist


Shooby

Shoubaneh Hemmati

Assistant Scientist


Daniel Masters

Assistant Scientist