Planck-dust-allsky

Supernova 2014C: Ongoing Interaction with Extended Circumstellar Material with Silicate Dust

December 2019 • 2019ApJ...887...75T

Authors • Tinyanont, Samaporn • Lau, Ryan M. • Kasliwal, Mansi M. • Maeda, Keiichi • Smith, Nathan • Fox, Ori D. • Gehrz, Robert D. • De, Kishalay • Jencson, Jacob • Bally, John • Masci, Frank

Abstract • Supernova (SN) 2014C is unique: a seemingly typical hydrogen-poor SN that started to interact with a dense, hydrogen-rich circumstellar medium (CSM) ∼100 days post-explosion. The delayed interaction suggests a detached CSM shell, unlike in a typical SN IIn where the CSM is much closer and the interaction commences earlier post-explosion, indicating a different mass-loss history. We present infrared observations of SN 2014C 1-5 yr post-explosion, including uncommon 9.7 μm imaging with COMICS on the Subaru telescope. Spectroscopy shows the intermediate-width He I 1.083 μm emission from the interacting region up to the latest epoch 1639 days post-explosion. The last Spitzer/IRAC photometry at 1920 days confirms ongoing CSM interaction. The 1-10 μm spectral energy distributions (SEDs) can be explained by a dust model with a mixture of 62% carbonaceous and 38% silicate dust, pointing to a chemically inhomogeneous CSM. The inference of silicate dust is the first among interacting SNe. An SED model with purely carbonaceous CSM dust, while possible, requires more than 0.22 M of dust, an order of magnitude larger than what has been observed in any SNe at this epoch. The light curve beyond 500 days is well fit by an interaction model with a wind-driven CSM and a mass-loss rate of ∼10-3 M yr-1, which presents an additional CSM density component exterior to the constant-density shell reported previously in the literature. SN 2014C could originate in a binary system, similar to RY Scuti, which would explain the observed chemical and density profile inhomogeneity in the CSM.

Links


IPAC Authors
(alphabetical)

Frank Masci

Senior Scientist