September
2016
•
2016A&A...594A..23P
Authors
•
Planck Collaboration
•
Ade, P. A. R.
•
Aghanim, N.
•
Arnaud, M.
•
Aumont, J.
•
Baccigalupi, C.
•
Banday, A. J.
•
Barreiro, R. B.
•
Bartlett, J. G.
•
Bartolo, N.
•
Battaner, E.
•
Benabed, K.
•
Benoit-Lévy, A.
•
Bernard, J. -P.
•
Bersanelli, M.
•
Bielewicz, P.
•
Bock, J. J.
•
Bonaldi, A.
•
Bonavera, L.
•
Bond, J. R.
•
Borrill, J.
•
Bouchet, F. R.
•
Burigana, C.
•
Butler, R. C.
•
Calabrese, E.
•
Catalano, A.
•
Chamballu, A.
•
Chiang, H. C.
•
Christensen, P. R.
•
Churazov, E.
•
Clements, D. L.
•
Colombo, L. P. L.
•
Combet, C.
•
Comis, B.
•
Couchot, F.
•
Coulais, A.
•
Crill, B. P.
•
Curto, A.
•
Cuttaia, F.
•
Danese, L.
•
Davies, R. D.
•
Davis, R. J.
•
de Bernardis, P.
•
de Rosa, A.
•
de Zotti, G.
•
Delabrouille, J.
•
Dickinson, C.
•
Diego, J. M.
•
Dole, H.
•
Donzelli, S.
•
Doré, O.
•
Douspis, M.
•
Ducout, A.
•
Dupac, X.
•
Efstathiou, G.
•
Elsner, F.
•
Enßlin, T. A.
•
Eriksen, H. K.
•
Finelli, F.
•
Flores-Cacho, I.
•
Forni, O.
•
Frailis, M.
•
Fraisse, A. A.
•
Franceschi, E.
•
Galeotta, S.
•
Galli, S.
•
Ganga, K.
•
Génova-Santos, R. T.
•
Giard, M.
•
Giraud-Héraud, Y.
•
Gjerløw, E.
•
González-Nuevo, J.
•
Górski, K. M.
•
Gregorio, A.
•
Gruppuso, A.
•
Gudmundsson, J. E.
•
Hansen, F. K.
•
Harrison, D. L.
•
Helou, G.
•
Hernández-Monteagudo, C.
•
Herranz, D.
•
Hildebrandt, S. R.
•
Hivon, E.
•
Hobson, M.
•
Hornstrup, A.
•
Hovest, W.
•
Huffenberger, K. M.
•
Hurier, G.
•
Jaffe, A. H.
•
Jaffe, T. R.
•
Jones, W. C.
•
Keihänen, E.
•
Keskitalo, R.
•
Kisner, T. S.
•
Kneissl, R.
•
Knoche, J.
•
Kunz, M.
•
Kurki-Suonio, H.
•
Lagache, G.
•
Lamarre, J. -M.
•
Langer, M.
•
Lasenby, A.
•
Lattanzi, M.
•
Lawrence, C. R.
•
Leonardi, R.
•
Levrier, F.
•
Lilje, P. B.
•
Linden-Vørnle, M.
•
López-Caniego, M.
•
Lubin, P. M.
•
Macías-Pérez, J. F.
•
Maffei, B.
•
Maggio, G.
•
Maino, D.
•
Mak, D. S. Y.
•
Mandolesi, N.
•
Mangilli, A.
•
Maris, M.
•
Martin, P. G.
•
Martínez-González, E.
•
Masi, S.
•
Matarrese, S.
•
Melchiorri, A.
•
Mennella, A.
•
Migliaccio, M.
•
Mitra, S.
•
Miville-Deschênes, M. -A.
•
Moneti, A.
•
Montier, L.
•
Morgante, G.
•
Mortlock, D.
•
Munshi, D.
•
Murphy, J. A.
•
Nati, F.
•
Natoli, P.
•
Noviello, F.
•
Novikov, D.
•
Novikov, I.
•
Oxborrow, C. A.
•
Paci, F.
•
Pagano, L.
•
Pajot, F.
•
Paoletti, D.
•
Partridge, B.
•
Pasian, F.
•
Pearson, T. J.
•
Perdereau, O.
•
Perotto, L.
•
Pettorino, V.
•
Piacentini, F.
•
Piat, M.
•
Pierpaoli, E.
•
Plaszczynski, S.
•
Pointecouteau, E.
•
Polenta, G.
•
Ponthieu, N.
•
Pratt, G. W.
•
Prunet, S.
•
Puget, J. -L.
•
Rachen, J. P.
•
Reinecke, M.
•
Remazeilles, M.
•
Renault, C.
•
Renzi, A.
•
Ristorcelli, I.
•
Rocha, G.
•
Rosset, C.
•
Rossetti, M.
•
Roudier, G.
•
Rubiño-Martín, J. A.
•
Rusholme, B.
•
Sandri, M.
•
Santos, D.
•
Savelainen, M.
•
Savini, G.
•
Scott, D.
•
Spencer, L. D.
•
Stolyarov, V.
•
Stompor, R.
•
Sunyaev, R.
•
Sutton, D.
•
Suur-Uski, A. -S.
•
Sygnet, J. -F.
•
Tauber, J. A.
•
Terenzi, L.
•
Toffolatti, L.
•
Tomasi, M.
•
Tristram, M.
•
Tucci, M.
•
Umana, G.
•
Valenziano, L.
•
Valiviita, J.
•
Van Tent, B.
•
Vielva, P.
•
Villa, F.
•
Wade, L. A.
•
Wandelt, B. D.
•
Wehus, I. K.
•
Welikala, N.
•
Yvon, D.
•
Zacchei, A.
•
Zonca, A.
Abstract
•
We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (I) using a catalogue of confirmed clusters detected in Planck data; (II) using an all-sky tSZ map built from Planck frequency maps; and (III) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (I) 6σ; (II) 3σ; and (III) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
Links