November
2014
•
2014A&A...571A..25P
Authors
•
Planck Collaboration
•
Ade, P. A. R.
•
Aghanim, N.
•
Armitage-Caplan, C.
•
Arnaud, M.
•
Ashdown, M.
•
Atrio-Barandela, F.
•
Aumont, J.
•
Baccigalupi, C.
•
Banday, A. J.
•
Barreiro, R. B.
•
Bartlett, J. G.
•
Bartolo, N.
•
Battaner, E.
•
Battye, R.
•
Benabed, K.
•
Benoît, A.
•
Benoit-Lévy, A.
•
Bernard, J. -P.
•
Bersanelli, M.
•
Bielewicz, P.
•
Bobin, J.
•
Bock, J. J.
•
Bonaldi, A.
•
Bonavera, L.
•
Bond, J. R.
•
Borrill, J.
•
Bouchet, F. R.
•
Bridges, M.
•
Bucher, M.
•
Burigana, C.
•
Butler, R. C.
•
Cardoso, J. -F.
•
Catalano, A.
•
Challinor, A.
•
Chamballu, A.
•
Chiang, L. -Y.
•
Chiang, H. C.
•
Christensen, P. R.
•
Church, S.
•
Clements, D. L.
•
Colombi, S.
•
Colombo, L. P. L.
•
Couchot, F.
•
Coulais, A.
•
Crill, B. P.
•
Curto, A.
•
Cuttaia, F.
•
Danese, L.
•
Davies, R. D.
•
Davis, R. J.
•
de Bernardis, P.
•
de Rosa, A.
•
de Zotti, G.
•
Delabrouille, J.
•
Delouis, J. -M.
•
Désert, F. -X.
•
Diego, J. M.
•
Dole, H.
•
Donzelli, S.
•
Doré, O.
•
Douspis, M.
•
Ducout, A.
•
Dunkley, J.
•
Dupac, X.
•
Efstathiou, G.
•
Enßlin, T. A.
•
Eriksen, H. K.
•
Fergusson, J.
•
Finelli, F.
•
Forni, O.
•
Frailis, M.
•
Franceschi, E.
•
Galeotta, S.
•
Ganga, K.
•
Giard, M.
•
Giardino, G.
•
Giraud-Héraud, Y.
•
González-Nuevo, J.
•
Górski, K. M.
•
Gratton, S.
•
Gregorio, A.
•
Gruppuso, A.
•
Hansen, F. K.
•
Hanson, D.
•
Harrison, D.
•
Henrot-Versillé, S.
•
Hernández-Monteagudo, C.
•
Herranz, D.
•
Hildebrandt, S. R.
•
Hivon, E.
•
Hobson, M.
•
Holmes, W. A.
•
Hornstrup, A.
•
Hovest, W.
•
Huffenberger, K. M.
•
Jaffe, T. R.
•
Jaffe, A. H.
•
Jones, W. C.
•
Juvela, M.
•
Keihänen, E.
•
Keskitalo, R.
•
Kisner, T. S.
•
Knoche, J.
•
Knox, L.
•
Kunz, M.
•
Kurki-Suonio, H.
•
Lagache, G.
•
Lähteenmäki, A.
•
Lamarre, J. -M.
•
Lasenby, A.
•
Laureijs, R. J.
•
Lawrence, C. R.
•
Leahy, J. P.
•
Leonardi, R.
•
Lesgourgues, J.
•
Liguori, M.
•
Lilje, P. B.
•
Linden-Vørnle, M.
•
López-Caniego, M.
•
Lubin, P. M.
•
Macías-Pérez, J. F.
•
Maffei, B.
•
Maino, D.
•
Mandolesi, N.
•
Maris, M.
•
Marshall, D. J.
•
Martin, P. G.
•
Martínez-González, E.
•
Masi, S.
•
Matarrese, S.
•
Matthai, F.
•
Mazzotta, P.
•
McEwen, J. D.
•
Melchiorri, A.
•
Mendes, L.
•
Mennella, A.
•
Migliaccio, M.
•
Mitra, S.
•
Miville-Deschênes, M. -A.
•
Moneti, A.
•
Montier, L.
•
Morgante, G.
•
Mortlock, D.
•
Moss, A.
•
Munshi, D.
•
Naselsky, P.
•
Natoli, P.
•
Netterfield, C. B.
•
Nørgaard-Nielsen, H. U.
•
Noviello, F.
•
Novikov, D.
•
Novikov, I.
•
Osborne, S.
•
Oxborrow, C. A.
•
Paci, F.
•
Pagano, L.
•
Pajot, F.
•
Paoletti, D.
•
Pasian, F.
•
Patanchon, G.
•
Peiris, H. V.
•
Perdereau, O.
•
Perotto, L.
•
Perrotta, F.
•
Piacentini, F.
•
Piat, M.
•
Pierpaoli, E.
•
Pietrobon, D.
•
Plaszczynski, S.
•
Pointecouteau, E.
•
Polenta, G.
•
Ponthieu, N.
•
Popa, L.
•
Poutanen, T.
•
Pratt, G. W.
•
Prézeau, G.
•
Prunet, S.
•
Puget, J. -L.
•
Rachen, J. P.
•
Räth, C.
•
Rebolo, R.
•
Remazeilles, M.
•
Renault, C.
•
Ricciardi, S.
•
Riller, T.
•
Ringeval, C.
•
Ristorcelli, I.
•
Rocha, G.
•
Rosset, C.
•
Roudier, G.
•
Rowan-Robinson, M.
•
Rusholme, B.
•
Sandri, M.
•
Santos, D.
•
Savini, G.
•
Scott, D.
•
Seiffert, M. D.
•
Shellard, E. P. S.
•
Spencer, L. D.
•
Starck, J. -L.
•
Stolyarov, V.
•
Stompor, R.
•
Sudiwala, R.
•
Sureau, F.
•
Sutton, D.
•
Suur-Uski, A. -S.
•
Sygnet, J. -F.
•
Tauber, J. A.
•
Tavagnacco, D.
•
Terenzi, L.
•
Toffolatti, L.
•
Tomasi, M.
•
Tristram, M.
•
Tucci, M.
•
Tuovinen, J.
•
Valenziano, L.
•
Valiviita, J.
•
Van Tent, B.
•
Varis, J.
•
Vielva, P.
•
Villa, F.
•
Vittorio, N.
•
Wade, L. A.
•
Wandelt, B. D.
•
Yvon, D.
•
Zacchei, A.
•
Zonca, A.
Abstract
•
Planck data have been used to provide stringent new constraints on cosmic strings and other defects. We describe forecasts of the CMB power spectrum induced by cosmic strings, calculating these from network models and simulations using line-of-sight Boltzmann solvers. We have studied Nambu-Goto cosmic strings, as well as field theory strings for which radiative effects are important, thus spanning the range of theoretical uncertainty in the underlying strings models. We have added the angular power spectrum from strings to that for a simple adiabatic model, with the extra fraction defined as f10 at multipole ℓ = 10. This parameter has been added to the standard six parameter fit using COSMOMC with flat priors. For the Nambu-Goto string model, we have obtained a constraint on the string tension of Gμ/c2 < 1.5 × 10-7 and f10 < 0.015 at 95% confidence that can be improved to Gμ/c2 < 1.3 × 10-7 and f10 < 0.010 on inclusion of high-ℓ CMB data. For the Abelian-Higgs field theory model we find, GμAH/c2< 3.2 × 10-7 and f10 < 0.028. The marginalised likelihoods for f10 and in the f10-Ωbh2 plane are also presented. We have additionally obtained comparable constraints on f10 for models with semilocal strings and global textures. In terms of the effective defect energy scale these are somewhat weaker at Gμ/c2 < 1.1 × 10-6. We have made complementarity searches for the specific non-Gaussian signatures of cosmic strings, calibrating with all-sky Planck resolution CMB maps generated from networks of post-recombination strings. We have validated our non-Gaussian searches using these simulated maps in a Planck-realistic context, estimating sensitivities of up to ΔGμ/c2 ≈ 4 × 10-7. We have obtained upper limits on the string tension at 95% confidence of Gμ/c2 < 9.0 × 10-7 with modal bispectrum estimation and Gμ/c2 < 7.8 × 10-7 for real space searches with Minkowski functionals. These are conservative upper bounds because only post-recombination string contributions have been included in the non-Gaussian analysis.
Links