November
2014
•
2014A&A...571A..17P
Authors
•
Planck Collaboration
•
Ade, P. A. R.
•
Aghanim, N.
•
Armitage-Caplan, C.
•
Arnaud, M.
•
Ashdown, M.
•
Atrio-Barandela, F.
•
Aumont, J.
•
Baccigalupi, C.
•
Banday, A. J.
•
Barreiro, R. B.
•
Bartlett, J. G.
•
Basak, S.
•
Battaner, E.
•
Benabed, K.
•
Benoît, A.
•
Benoit-Lévy, A.
•
Bernard, J. -P.
•
Bersanelli, M.
•
Bielewicz, P.
•
Bobin, J.
•
Bock, J. J.
•
Bonaldi, A.
•
Bonavera, L.
•
Bond, J. R.
•
Borrill, J.
•
Bouchet, F. R.
•
Bridges, M.
•
Bucher, M.
•
Burigana, C.
•
Butler, R. C.
•
Cardoso, J. -F.
•
Catalano, A.
•
Challinor, A.
•
Chamballu, A.
•
Chiang, H. C.
•
Chiang, L. -Y.
•
Christensen, P. R.
•
Church, S.
•
Clements, D. L.
•
Colombi, S.
•
Colombo, L. P. L.
•
Couchot, F.
•
Coulais, A.
•
Crill, B. P.
•
Curto, A.
•
Cuttaia, F.
•
Danese, L.
•
Davies, R. D.
•
Davis, R. J.
•
de Bernardis, P.
•
de Rosa, A.
•
de Zotti, G.
•
Déchelette, T.
•
Delabrouille, J.
•
Delouis, J. -M.
•
Désert, F. -X.
•
Dickinson, C.
•
Diego, J. M.
•
Dole, H.
•
Donzelli, S.
•
Doré, O.
•
Douspis, M.
•
Dunkley, J.
•
Dupac, X.
•
Efstathiou, G.
•
Enßlin, T. A.
•
Eriksen, H. K.
•
Finelli, F.
•
Forni, O.
•
Frailis, M.
•
Franceschi, E.
•
Galeotta, S.
•
Ganga, K.
•
Giard, M.
•
Giardino, G.
•
Giraud-Héraud, Y.
•
González-Nuevo, J.
•
Górski, K. M.
•
Gratton, S.
•
Gregorio, A.
•
Gruppuso, A.
•
Gudmundsson, J. E.
•
Hansen, F. K.
•
Hanson, D.
•
Harrison, D.
•
Henrot-Versillé, S.
•
Hernández-Monteagudo, C.
•
Herranz, D.
•
Hildebrandt, S. R.
•
Hivon, E.
•
Ho, S.
•
Hobson, M.
•
Holmes, W. A.
•
Hornstrup, A.
•
Hovest, W.
•
Huffenberger, K. M.
•
Jaffe, A. H.
•
Jaffe, T. R.
•
Jones, W. C.
•
Juvela, M.
•
Keihänen, E.
•
Keskitalo, R.
•
Kisner, T. S.
•
Kneissl, R.
•
Knoche, J.
•
Knox, L.
•
Kunz, M.
•
Kurki-Suonio, H.
•
Lagache, G.
•
Lähteenmäki, A.
•
Lamarre, J. -M.
•
Lasenby, A.
•
Laureijs, R. J.
•
Lavabre, A.
•
Lawrence, C. R.
•
Leahy, J. P.
•
Leonardi, R.
•
León-Tavares, J.
•
Lesgourgues, J.
•
Lewis, A.
•
Liguori, M.
•
Lilje, P. B.
•
Linden-Vørnle, M.
•
López-Caniego, M.
•
Lubin, P. M.
•
Macías-Pérez, J. F.
•
Maffei, B.
•
Maino, D.
•
Mandolesi, N.
•
Mangilli, A.
•
Maris, M.
•
Marshall, D. J.
•
Martin, P. G.
•
Martínez-González, E.
•
Masi, S.
•
Massardi, M.
•
Matarrese, S.
•
Matthai, F.
•
Mazzotta, P.
•
Melchiorri, A.
•
Mendes, L.
•
Mennella, A.
•
Migliaccio, M.
•
Mitra, S.
•
Miville-Deschênes, M. -A.
•
Moneti, A.
•
Montier, L.
•
Morgante, G.
•
Mortlock, D.
•
Moss, A.
•
Munshi, D.
•
Murphy, J. A.
•
Naselsky, P.
•
Nati, F.
•
Natoli, P.
•
Netterfield, C. B.
•
Nørgaard-Nielsen, H. U.
•
Noviello, F.
•
Novikov, D.
•
Novikov, I.
•
Osborne, S.
•
Oxborrow, C. A.
•
Paci, F.
•
Pagano, L.
•
Pajot, F.
•
Paoletti, D.
•
Partridge, B.
•
Pasian, F.
•
Patanchon, G.
•
Perdereau, O.
•
Perotto, L.
•
Perrotta, F.
•
Piacentini, F.
•
Piat, M.
•
Pierpaoli, E.
•
Pietrobon, D.
•
Plaszczynski, S.
•
Pointecouteau, E.
•
Polenta, G.
•
Ponthieu, N.
•
Popa, L.
•
Poutanen, T.
•
Pratt, G. W.
•
Prézeau, G.
•
Prunet, S.
•
Puget, J. -L.
•
Pullen, A. R.
•
Rachen, J. P.
•
Rebolo, R.
•
Reinecke, M.
•
Remazeilles, M.
•
Renault, C.
•
Ricciardi, S.
•
Riller, T.
•
Ristorcelli, I.
•
Rocha, G.
•
Rosset, C.
•
Roudier, G.
•
Rowan-Robinson, M.
•
Rubiño-Martín, J. A.
•
Rusholme, B.
•
Sandri, M.
•
Santos, D.
•
Savini, G.
•
Scott, D.
•
Seiffert, M. D.
•
Shellard, E. P. S.
•
Smith, K.
•
Spencer, L. D.
•
Starck, J. -L.
•
Stolyarov, V.
•
Stompor, R.
•
Sudiwala, R.
•
Sunyaev, R.
•
Sureau, F.
•
Sutton, D.
•
Suur-Uski, A. -S.
•
Sygnet, J. -F.
•
Tauber, J. A.
•
Tavagnacco, D.
•
Terenzi, L.
•
Toffolatti, L.
•
Tomasi, M.
•
Tristram, M.
•
Tucci, M.
•
Tuovinen, J.
•
Umana, G.
•
Valenziano, L.
•
Valiviita, J.
•
Van Tent, B.
•
Vielva, P.
•
Villa, F.
•
Vittorio, N.
•
Wade, L. A.
•
Wandelt, B. D.
•
White, M.
•
White, S. D. M.
•
Yvon, D.
•
Zacchei, A.
•
Zonca, A.
Abstract
•
On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.
Links