September 2013 • 2013MNRAS.434....2P
Abstract • The Euclid mission is the second M-class mission of the ESA Cosmic Vision programme, with the principal science goal of studying dark energy through observations of weak lensing and baryon acoustic oscillations. Euclid is also expected to undertake additional Legacy Science programmes. One such proposal is the Exoplanet Euclid Legacy Survey (ExELS) which will be the first survey able to measure the abundance of exoplanets down to Earth mass for host separations from ∼1 au out to the free-floating (unbound) regime. The cold and free-floating exoplanet regimes represent a crucial discovery space for testing planet formation theories. ExELS will use the gravitational microlensing technique and will detect 1000 microlensing events per month over 1.6 deg2 of the Galactic bulge. We assess how many of these events will have detectable planetary signatures using a detailed multiwavelength microlensing simulator - the Manchester-Besançon microLensing Simulator (MABμLS) - which incorporates the Besançon Galactic model with 3D extinction. MABμLS is the first theoretical simulation of microlensing to treat the effects of point spread function (PSF) blending self-consistently with the underlying Galactic model. We use MABμLS, together with current numerical models for the Euclid PSFs, to explore a number of designs and de-scope options for ExELS, including the exoplanet yield as a function of filter choice and slewing time, and the effect of systematic photometry errors. Using conservative extrapolations of current empirical exoplanet mass functions determined from ground-based microlensing and radial velocity surveys, ExELS can expect to detect a few hundred cold exoplanets around mainly G-, K- and M-type stellar hosts, including ∼45 Earth-mass planets and ∼6 Mars-mass planets for an observing programme totalling 10 months. ExELS will be capable of measuring the cold exoplanet mass function down to Earth mass or below, with orbital separations ranging from ∼1 au out to infinity (i.e. the free-floating regime). Recent ground-based microlensing measurements indicate a significant population of free-floating Jupiters, in which case ExELS will detect hundreds of free-floating planets. ExELS will also be sensitive to hot exoplanets and sub-stellar companions through their transit signatures and this is explored in a companion paper.
Links