Ned-allsky

Euclid preparation. V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey

November 2019 • 2019A&A...631A..85E

Authors • Euclid Collaboration • Barnett, R. • Warren, S. J. • Mortlock, D. J. • Cuby, J. -G. • Conselice, C. • Hewett, P. C. • Willott, C. J. • Auricchio, N. • Balaguera-Antolínez, A. • Baldi, M. • Bardelli, S. • Bellagamba, F. • Bender, R. • Biviano, A. • Bonino, D. • Bozzo, E. • Branchini, E. • Brescia, M. • Brinchmann, J. • Burigana, C. • Camera, S. • Capobianco, V. • Carbone, C. • Carretero, J. • Carvalho, C. S. • Castander, F. J. • Castellano, M. • Cavuoti, S. • Cimatti, A. • Clédassou, R. • Congedo, G. • Conversi, L. • Copin, Y. • Corcione, L. • Coupon, J. • Courtois, H. M. • Cropper, M. • Da Silva, A. • Duncan, C. A. J. • Dusini, S. • Ealet, A. • Farrens, S. • Fosalba, P. • Fotopoulou, S. • Fourmanoit, N. • Frailis, M. • Fumana, M. • Galeotta, S. • Garilli, B. • Gillard, W. • Gillis, B. R. • Graciá-Carpio, J. • Grupp, F. • Hoekstra, H. • Hormuth, F. • Israel, H. • Jahnke, K. • Kermiche, S. • Kilbinger, M. • Kirkpatrick, C. C. • Kitching, T. • Kohley, R. • Kubik, B. • Kunz, M. • Kurki-Suonio, H. • Laureijs, R. • Ligori, S. • Lilje, P. B. • Lloro, I. • Maiorano, E. • Mansutti, O. • Marggraf, O. • Martinet, N. • Marulli, F. • Massey, R. • Mauri, N. • Medinaceli, E. • Mei, S. • Mellier, Y. • Metcalf, R. B. • Metge, J. J. • Meylan, G. • Moresco, M. • Moscardini, L. • Munari, E. • Neissner, C. • Niemi, S. M. • Nutma, T. • Padilla, C. • Paltani, S. • Pasian, F. • Paykari, P. • Percival, W. J. • Pettorino, V. • Polenta, G. • Poncet, M. • Pozzetti, L. • Raison, F. • Renzi, A. • Rhodes, J. • Rix, H. -W. • Romelli, E. • Roncarelli, M. • Rossetti, E. • Saglia, R. • Sapone, D. • Scaramella, R. • Schneider, P. • Scottez, V. • Secroun, A. • Serrano, S. • Sirri, G. • Stanco, L. • Sureau, F. • Tallada-Crespí, P. • Tavagnacco, D. • Taylor, A. N. • Tenti, M. • Tereno, I. • Toledo-Moreo, R. • Torradeflot, F. • Valenziano, L. • Vassallo, T. • Wang, Y. • Zacchei, A. • Zamorani, G. • Zoubian, J. • Zucca, E.

Abstract • We provide predictions of the yield of 7 < z < 9 quasars from the Euclid wide survey, updating the calculation presented in the Euclid Red Book in several ways. We account for revisions to the Euclid near-infrared filter wavelengths; we adopt steeper rates of decline of the quasar luminosity function (QLF; Φ) with redshift, Φ ∝ 10k(z - 6), k = -0.72, and a further steeper rate of decline, k = -0.92; we use better models of the contaminating populations (MLT dwarfs and compact early-type galaxies); and we make use of an improved Bayesian selection method, compared to the colour cuts used for the Red Book calculation, allowing the identification of fainter quasars, down to JAB ∼ 23. Quasars at z > 8 may be selected from Euclid OYJH photometry alone, but selection over the redshift interval 7 < z < 8 is greatly improved by the addition of z-band data from, e.g., Pan-STARRS and LSST. We calculate predicted quasar yields for the assumed values of the rate of decline of the QLF beyond z = 6. If the decline of the QLF accelerates beyond z = 6, with k = -0.92, Euclid should nevertheless find over 100 quasars with 7.0 < z < 7.5, and ∼25 quasars beyond the current record of z = 7.5, including ∼8 beyond z = 8.0. The first Euclid quasars at z > 7.5 should be found in the DR1 data release, expected in 2024. It will be possible to determine the bright-end slope of the QLF, 7 < z < 8, M1450 < -25, using 8 m class telescopes to confirm candidates, but follow-up with JWST or E-ELT will be required to measure the faint-end slope. Contamination of the candidate lists is predicted to be modest even at JAB ∼ 23. The precision with which k can be determined over 7 < z < 8 depends on the value of k, but assuming k = -0.72 it can be measured to a 1σ uncertainty of 0.07.

Links


IPAC Authors
(alphabetical)

Yun_may2018

Yun Wang

Senior Scientist