Planck-cmb-allsky

Planck intermediate results. XII: Diffuse Galactic components in the Gould Belt system

September 2013 • 2013A&A...557A..53P

Authors • Planck Collaboration • Ade, P. A. R. • Aghanim, N. • Alves, M. I. R. • Arnaud, M. • Ashdown, M. • Atrio-Barandela, F. • Aumont, J. • Baccigalupi, C. • Balbi, A. • Banday, A. J. • Barreiro, R. B. • Bartlett, J. G. • Battaner, E. • Bedini, L. • Benabed, K. • Benoît, A. • Bernard, J. -P. • Bersanelli, M. • Bonaldi, A. • Bond, J. R. • Borrill, J. • Bouchet, F. R. • Boulanger, F. • Burigana, C. • Butler, R. C. • Cabella, P. • Cardoso, J. -F. • Chen, X. • Chiang, L. -Y. • Christensen, P. R. • Clements, D. L. • Colombi, S. • Colombo, L. P. L. • Coulais, A. • Cuttaia, F. • Davies, R. D. • Davis, R. J. • de Bernardis, P. • de Gasperis, G. • de Zotti, G. • Delabrouille, J. • Dickinson, C. • Diego, J. M. • Dobler, G. • Dole, H. • Donzelli, S. • Doré, O. • Douspis, M. • Dupac, X. • Enßlin, T. A. • Finelli, F. • Forni, O. • Frailis, M. • Franceschi, E. • Galeotta, S. • Ganga, K. • Génova-Santos, R. T. • Ghosh, T. • Giard, M. • Giardino, G. • Giraud-Héraud, Y. • González-Nuevo, J. • Górski, K. M. • Gregorio, A. • Gruppuso, A. • Hansen, F. K. • Harrison, D. • Hernández-Monteagudo, C. • Hildebrandt, S. R. • Hivon, E. • Hobson, M. • Holmes, W. A. • Hornstrup, A. • Hovest, W. • Huffenberger, K. M. • Jaffe, T. R. • Jaffe, A. H. • Juvela, M. • Keihänen, E. • Keskitalo, R. • Kisner, T. S. • Knoche, J. • Kunz, M. • Kurki-Suonio, H. • Lagache, G. • Lähteenmäki, A. • Lamarre, J. -M. • Lasenby, A. • Lawrence, C. R. • Leach, S. • Leonardi, R. • Lilje, P. B. • Linden-Vørnle, M. • Lubin, P. M. • Macías-Pérez, J. F. • Maffei, B. • Maino, D. • Mandolesi, N. • Maris, M. • Marshall, D. J. • Martin, P. G. • Martínez-González, E. • Masi, S. • Massardi, M. • Matarrese, S. • Mazzotta, P. • Melchiorri, A. • Mennella, A. • Mitra, S. • Miville-Deschênes, M. -A. • Moneti, A. • Montier, L. • Morgante, G. • Mortlock, D. • Munshi, D. • Murphy, J. A. • Naselsky, P. • Nati, F. • Natoli, P. • Nørgaard-Nielsen, H. U. • Noviello, F. • Novikov, D. • Novikov, I. • Osborne, S. • Oxborrow, C. A. • Pajot, F. • Paladini, R. • Paoletti, D. • Peel, M. • Perotto, L. • Perrotta, F. • Piacentini, F. • Piat, M. • Pierpaoli, E. • Pietrobon, D. • Plaszczynski, S. • Pointecouteau, E. • Polenta, G. • Popa, L. • Poutanen, T. • Pratt, G. W. • Prunet, S. • Puget, J. -L. • Rachen, J. P. • Reach, W. T. • Rebolo, R. • Reinecke, M. • Renault, C. • Ricciardi, S. • Ristorcelli, I. • Rocha, G. • Rosset, C. • Rubiño-Martín, J. A. • Rusholme, B. • Salerno, E. • Sandri, M. • Savini, G. • Scott, D. • Spencer, L. • Stolyarov, V. • Sudiwala, R. • Suur-Uski, A. -S. • Sygnet, J. -F. • Tauber, J. A. • Terenzi, L. • Tibbs, C. T. • Toffolatti, L. • Tomasi, M. • Tristram, M. • Valenziano, L. • Van Tent, B. • Varis, J. • Vielva, P. • Villa, F. • Vittorio, N. • Wade, L. A. • Wandelt, B. D. • Ysard, N. • Yvon, D. • Zacchei, A. • Zonca, A.

Abstract • We perform an analysis of the diffuse low-frequency Galactic components in the southern part of the Gould Belt system (130° ≤ l ≤ 230° and -50° ≤ b ≤ -10°). Strong ultra-violet flux coming from the Gould Belt super-association is responsible for bright diffuse foregrounds that we observe from our position inside the system and that can help us improve our knowledge of the Galactic emission. Free-free emission and anomalous microwave emission (AME) are the dominant components at low frequencies (ν < 40 GHz), while synchrotron emission is very smooth and faint. We separated diffuse free-free emission and AME from synchrotron emission and thermal dust emission by using Planck data, complemented by ancillary data, using the correlated component analysis (CCA) component-separation method and we compared our results with the results of cross-correlation of foreground templates with the frequency maps. We estimated the electron temperature Te from Hα and free-free emission using two methods (temperature-temperature plot and cross-correlation) and obtained Te ranging from 3100 to 5200K for an effective fraction of absorbing dust along the line of sight of 30% (fd = 0.3). We estimated the frequency spectrum of the diffuse AME and recovered a peak frequency (in flux density units) of 25.5 ± 1.5 GHz. We verified the reliability of this result with realistic simulations that include biases in the spectral model for the AME and in the free-free template. By combining physical models for vibrational and rotational dust emission and adding the constraints from the thermal dust spectrum from Planck and IRAS, we are able to present a good description of the AME frequency spectrum for plausible values of the local density and radiation field.

Appendices are available in electronic form at http://www.aanda.org

Links


IPAC Authors
(alphabetical)

Rp_red

Roberta Paladini

Senior Research Scientist


Ben Rusholme

Chief Engineer