How Extrasolar Planetesimals Show Up in Spitzer Data

<u>Torsten Löhne</u>¹, Alexander Krivov¹, Sebastian Müller¹, Harald Mutschke¹, Jens Rodmann²

> 1—AIU, Jena, Germany 2—ESA/ESTEC, Noordwijk, The Netherlands

- Introduction
- Long-term debris disk evolution
- Comparison with Spitzer Statistics
- Individual systems
- Outlook and conclusions

Introduction

Direct problem?

Inverse problem!

Inverse problem!

Inverse problem!

Introduction Analysis of Collisional Evolution

Size distribution

CAMPO-BAGATÍN et al., Plan. Space Sc., 42 (1994), S. 1079–1092 THÉBAULT, AUGEREAU, Astron. & Astroph., 472 (2007), S. 469–485 KRIVOV, LÖHNE, SREMČEVIĆ, Astron. & Astroph., 455 (2006), S. 509–519 THÉBAULT et al., Astron. & Astroph., 408 (2003), S. 775–788 LÖHNE, KRIVOV, RODMANN, ApJ, 673 (2008), 1123

O'BRIEN, GREENBERG, *Icarus*, **178** (2005), 179 WYATT et al., *ApJ*, **658** (2008), 569 LÖHNE, KRIVOV, RODMANN, *ApJ*, **673** (2008), 1123 q_p: slope of the planetesimals' size distrib. set during growth phase (See also: Poster #117 by A. Shannon)

Comparison with Spitzer statistics

Thermal emission at 24 µm

- Flux calculation based on modified blackbody.
- Synthetic population within reasonable bounds (M < 50 M_⊕, 20 < R < 130 AU) covers range of observational data.

BEICHMAN et al., ApJ, 622 (2005), 1160; BEICHMAN et al., ApJ, 652 (2006), 1674; BRYDEN et al., ApJ, 636 (2006), 1098; CHEN et al., ApJ, 633 (2005), 493; CHEN et al., ApJ, 634 (2005), 1372; HILLENBRAND et al., ApJ, 677 (2008), 630; MEYER et al., PASP, 118 (2006), 1690; TRILLING et al., ApJ, 674 (2008), 1086

Onset of collisional cascade is not modelled here: work in progress.

WYATT et al., *ApJ*, 598 (2003), 1321; QUILLEN et al., *MNRAS*, 380 (2007), 1642; KENYON, BROMLEY, *ApJ*, in press

Löhne, Krivov, Rodmann, ApJ, 673 (2008), 1123

10⁸

Age [a]

 10^{9}

10¹⁰

Line 10² Line 1

- Flux calculation based on modified blackbody.
- Synthetic population within reasonable bounds (M < 50 M_⊕, 20 < R < 130 AU) covers range of observational data.

BEICHMAN et al., ApJ, 622 (2005), 1160; BEICHMAN et al., ApJ, 652 (2006), 1674; BRYDEN et al., ApJ, 636 (2006), 1098; CHEN et al., ApJ, 632 (2005), 493; CHEN et al., ApJ, 634 (2005), 1372; HILLENBRAND et al., ApJ, 677 (2008), 630; MEYER et al., PASP, 118 (2006), 1690; TRILLING et al., ApJ, 674 (2008), 1086

Onset of collisional cascade is not modelled here: work in progress.

WYATT et al., *ApJ*, 598 (2003), 1321; QUILLEN et al., *MNRAS*, 380 (2007), 1642; KENYON, BROMLEY, *ApJ*, in press

LÖHNE, KRIVOV, RODMANN, ApJ, 673 (2008), 1123

T. Löhne (AIU Jena)

- Flux calculation based on modified blackbody.
- Synthetic population within reasonable bounds (M < 50 M_⊕, 20 < R < 130 AU) covers range of observational data.

BEICHMAN et al., ApJ, 622 (2005), 1160; BEICHMAN et al., ApJ, 652 (2006), 1674; BRYDEN et al., ApJ, 636 (2006), 1098; CHEN et al., ApJ, 633 (2005), 493; CHEN et al., ApJ, 634 (2005), 1372; HILLENBRAND et al., ApJ, 677 (2008), 630; MEYER et al., PASP, 118 (2006), 1690; TRILLING et al., ApJ, 674 (2008), 1086

Onset of collisional cascade is not modelled here: work in progress.

WYATT et al., *ApJ*, 598 (2003), 1321; QUILLEN et al., *MNRAS*, 380 (2007), 1642; KENYON, BROMLEY, *ApJ*, in press

Löhne, Krivov, Rodmann, ApJ, 673 (2008), 1123

[24] vs. [70] Thermal emission at 24 um 10³ 10¹ HD 61005 observed synthetic HD 6100 HD 107146 Flux ratio (F_{dust}/F_{star})_{24 µm} HD 107146 HD 10647 HD 10647 10⁰ 10² 10⁻¹ (F_{dust}/F_{star})_{70 μm} 10¹ 10⁻² 10-5 Meanth = Mdust 10¹⁰ 107 108 10⁹ Age [a] observed 10⁰ synthetic Thermal emission at 70 µm photom, uncert. observed Flux ratio (F_{dus}/F_{star})70 µm HD 107146 synthetic 10⁻¹ 10-3 10-2 10-1 10⁰ 10^{1} (F_{dust}/F_{star})_{24 um} Example for possible refinement: disk ٩ 10⁰ mass range made disk size-dependent $(M_{\rm max} \propto R)$ 10⁻¹ 10⁸ 10⁹ 10¹⁰ 10

Age [a]

Individual systems

Mie-based calculation of thermal emission

Temperature distribution for astron. silicate around G2V:

KRIVOV, MÜLLER, LÖHNE, MUTSCHKE, ApJ, 687 (2008), 608

	Radius	Mass	
	[AU]	total $[M_\oplus]$	dust [M_{\oplus}]
inner disk:	3	$2 imes 10^{-2}$	$5 imes 10^{-7}$
outer disk:	200	50	$5 imes 10^{-2}$

Krivov, Müller, Löhne, Mutschke, ApJ, 687 (2008), 608

J. Watt

Conclusions and Outlook

- Size and radial distribution are coupled; dust mass and total mass evolve differently.
- Primordial planetesimal distribution constrained by IR excess statistics.
- Belt masses and sizes are more realistically inferred from improved dynamical/collisional and thermal emission models.
- Typical planetesimal belts:
 a few to a few ten earth masses at
 a few ten to more than a hundred AU.
- To be done: model onset of collisional cascade, consider stochastic events, explore influence of optical dust properties

Thank you for your attention!

