Thomas Henning Max Planck Institute for Astronomy – Heidelberg

Disk around very young massive stars

CoKu Tau1	DG Tau B	Haro 6-5B	AB Aurigae		
500 AU IRAS 04016+2610	IRAS 04248+2612	IRAS 04302+2247			
-	1. A.F.	A.	10''		State -
			= 1300 AU @ 145	oc	and the second
Young Stellar Disks in Infra PRC99-05a • STScI OPO D. Padgett (IPAC/Caltech), W. Br	a red andner (IPAC), K. Stapelfeldt (JP	HST • NICMOS	<i>i</i> < 45°	(Grady ea. 1999)	Orion KL CISCO (H2 (v=1-0 S(1)) – Cont) Subaru Telescope, National Astronomical Observatory of Japan January 28, 1999

T Tauri stars 😳 😳 😳

Herbig Ae stars 😳 😳 😳

mYSOs ???

Importance of massive stars

Enormous impact on ISM and star clusters

- Outflows and jets
 - UV radiation
- Nucleosynthesis
- Supernovae

Massive star formation is the only star formation mode observable in extragalactic systems.

Orion Nebula CISCO Subaru Telescope, National Astronomical Observatory of Japan

CISCO (J, K' & H2 (v=1-0 S(1)) Japan January 28, 1999

Luminosity-to-mass ratio

High-mass stars: Mass larger than 8 M_{sun} – ZAMS B4 – 10³ L_{sun}

Accretion Limit - Spherical Symmetry

(Kahn 1974, Yorke & Krügel 1977, Wolfire & Cassinelli 1987)

$$\implies \kappa_{\rm eff} < 130 \ \rm cm^2 g^{-1} \left[\frac{M}{10 M_{\odot}}\right] \left[\frac{L}{1000 L_{\odot}}\right]^{-1}$$

Possible Solutions (2D)

- Formation of accretion disks: Ongoing accretion due to ram pressure for lower accretion rates than in 1D spherical case
 (Nakano 1989, Nakano, Hasegawa & Norman 1995, Jyjina & Adams 1996, Yorke & Sonnhalter 2002)
 Anisotropic radiation field "flashlight effect" (Yorke & Sonnhalter 2002)
- Increased flashlight effect by wind-driven cavities (Krumholz, McKee & Klein 2005a)

Yorke & Sonnhalter (2002)

Krumholz, McKee & Klein (2005a)

FIG. 1.—Color maps show the gas temperatures for each of our models. The models are (a) no wind cavity, (b) $\theta_o = 5^\circ$, b = 1.5, (c) $\theta_o = 10^\circ$, b = 1.5, (d) $\theta_o = 15^\circ$, b = 1.5, (e) $\theta_o = 10^\circ$, b = 1.25, and (f) $\theta_o = 10^\circ$, b = 2.0. The white dots inside the cavity in panel c are the result of a minor code bug. [See the electronic edition of the Journal for a color version of this figure.]

Disks, Accretion, Binaries

- $M_{disk} / M_* \approx 0.2 0.5$
- Global GI creates strong m = 1 spiral pattern
- Disks accrete very rapidly; α_{eff} ~ 1
- Disks reach Q ~ 1, form fragments that migrate inward. Tight binaries likely result.

(Kratter & Matzner 2006, Krumholz ea. 2007, Kratter ea. 2008)

Surface density (upper) and Toomre Q (lower)

The Challenges

- Very massive objects are rare
- Regions are at large distances (<1000AU gives <1'' for > 1kpc)
- Evolution is presumably fast (High accretion rates upward of 10⁻⁴ M_{sun}/yr over timescales of 10⁵ yrs)

I EXPECTED TIMES LIKE THIS - BUT I NEVER THOUGHT THEY'D BE SO BAD, SO LONG, AND SO FREQUENT.

www.despair.com

- MSF regions have complex structure
- Luminosity determination

(Resolution, External radiation fields, Non-spherical radiation fields, Underluminous objects (?))

The SO-1 disk candidate in M17

Chini et al. 2004, Steinacker et al. 2006

M17-SO1 – An Accretion Disk

Variable P Cyg profile (normal and inverse) at H α \Rightarrow Outflow and infall

M17-SO1 – An Accretion Disk

Nürnberger et al. (2007)

H₂ jet up to 7200 AU to SW, but no counter-jet (extinction)

 $M_{acc}^{*} \approx 9.3 \times 10^{-5} M_{\odot} yr^{-1}$

Too high for low-mass ⇒ High-mass protostar or FU Ori?

Do we really see a massive star + disk ?

Photometry: > 2.8 M_{\odot} Extinction from modelling (Steinacker et al. 2006) and Spitzer MIR data: Lower limits (A_V > 60 mag) <u>Disk mass: 0.02 – 5 M_{sun}</u>

Detection of a point source and jet

New data: Point source and jet structure

Nielbock et al. (2008)

 $Star > 2.8 M_{sun} \quad Disk > 0.02 - 5 M_{sun}$

Resolution, Resolution, Resolution

DR21(OH) MM1: Spitzer and VLA in concert

VLA 7 mm image vs MIPS 70 µm contours

DR21 structure - IRAC (Marston et al. 2004)

Disclaimer: This is not a Spitzer talk!

1999: ALFA / OMEGA @ 3.5m Calar Alto

2002 NAOS-CONICA@ESO 8.0 m VLT UT4 "Yepun"

NACO – New Wavelengths at sub-arcsecond scales

SMA Observations

Sollins et al. (2004)

G5.89-0.39: More than just a spherical UCHII region

Wavelength (μm)

NACO long-slit spectrum of "central" star confirms SpT ``earlier than O7V'' The symbols denote the central O5-O7 star, the centre of the Brγ bipolarity, and the bipolar L' band structure related to the Sollins mm source (inset with more extreme L' cut levels for clarity)

The Toolbox

Disk Tracers

- Extinction lanes, thermal infrared emission
- Infrared interferometry (e.g. MIDI @ VLTI)
- NIR gas emission lines (CO)
- Millimeter continuum observations (incl. polarimetry)
- Non-thermal lines (SiO, CH₃OH, H₂O, OH, H rec. lines)
- Thermal lines (e.g. NH₃, CS, C¹⁸O, SO₂, CH₃CN, HCOOCH₃, H rec. lines)

Recent reviews: Cesaroni et al. (2006, 2007)

- Near-IR observations show the presence of a hot inner disk
- Mid-IR (TIMMI2) observations trace dust of a few 100 K and show an extended source (1.8"= 6500 AU).
- An envelope is detected in the sub-mm (Karnik et al. 2001).
- Near- and mid-IR SED can be fitted by a 2 temperature blackbody, representing the inner disk and the outer envelope (Bik et al. 2008)

IRAS 16164-5046

- VLT ISAAC spectra (R=10,000) of CO bandheads (Bik & Thi, 2004)
- CO bandheads: Spectral profile can be explained with a Keplerian velocity profile
- Central star: ~O7 based on ratio Hel/Br gamma (Hanson et al. 2002) in the small HII region surrounding this source

- Distance: 3.6 kpc
- Central star: ~30 Msun (O7)
- T_{ex}(CO): ~4000 K
- N(CO): ~4 10²⁰ cm⁻²
- R (CO):~ 3AU

The Kleinmann & Wright Object (KWO, M17 IRS 1)

VLT-ISAAC (J band, Chini 2004)

 $(D=2.2 \text{ kpc}, L=2x10^4 \text{ L}_{sun})$

Follert ea. 2009

 λ (um)

Combination of SED fitting and interferometric data

parameter	value		
stellar mass	$15.0 M_{\odot}$		
stellar radius	$4.9 R_{\odot}$		
stellar temperature	31350 K		
disk mass	$9 \ge 10^{-2} M_{\odot}$		
disk outer radius	506 AU		
disk inner radius	26 AU ($\cong 2.2 R_{SUB}$)		
scale height factor	0.903		
disk flaring power	1.153		
disk accretion rate	$7.8 \ge 10^{-8} M_{\odot}/\text{yr}$		
inclination angle	75.5°		

Comparison between synthetic and observed visibility curves

Synthetic image for best fitting model (smoothed) - RT code by B. Whitney '03, Fitting tool – Robitaille ea. 2006, 2007

(c)

41°13'40"

0.05 0

Image: H2 v=1-0 S(1)

G24.78+0.08

-7°12'00" - (b)

113

121

Not all massive stars are the same!

Objects with luminosities larger than $\sim 10^5 L_{sun}$ are often characterized by large ($\sim 0.1 \text{ pc}$), massive (few hundred M_{sun}) rotating structures (,,circumcluster toroids" – Cesaroni et al. 2006)

G 10.62-0.38 (Keto et al. 1998), G 24.78+0.08 (Beltran et al.2004, 2005)

Mean velocity of molecular gas (NH₃) Sollins et al. (2005)

Mean velocity of ionized gas (H66a) Keto (2002)

Disks around Massive Young Stellar Objects?

 + IRAS 20126 + 4104; L = 1.3 × 10⁴ L_☉; d = 1.7kpc CH₃CN, NH₃ (1,1), (2,2), C³⁴S(5-4), 3.6cm continuum, ... (Cesaroni et al. 1997, 1999, 2005; Zhang et al. 1998, 2001)
 Disk diameter: 3200 AU, Mass: 4 M_☉

+ G 192.16 – 3.82; L = 3×10^3 L_{\odot} (B2); d = 2kpc ¹³CO, C¹⁸O, H₂O maser line; 2.6mm, 7mm, and 3.6cm continuum (Shepherd & Kurtz 1999, Shepherd et al. 2001) Disk diameter: 130AU; Mass: ~ few M_{\odot} Flattened rotating structure $(H_2O) \sim \text{diameter of } 1000 \text{AU}$ + AFGL 490; L $\approx 3 \times 10^3 L_{\odot}$ (B2); d = 1kpc $CS(2-1), C^{17}O, 3mm$ continuum, ... (Schreyer et al. 2002, 2006) Disk diameter: < 250 AU; Mass \sim few M_{\odot} Flattened rotating structure 22000AU × 6000AU

IRAS 20126+4104

SED: 1.3x10⁴ L_{sun}
M_{*}=7-15 M_{sun}
D=1.7 kpc
Evidence:
Keplerian-like rotation
Flattened Structure

Jet-like outflow

Shepherd et al. 99

AFGL 490 – Our example

- Optical: diffuse nebulosity, NIR: luminous source (Allen, 1972)
- D ≈ 1 kpc, L = 1.4 4 x 10³ L_{sun}
 Spectral type B3-B2, M_{*} = 8-10 M_{sun}
- Typical properties of a Becklin Neugebauer Object:
 - weak continuum flux at I≥1cm
 - broad & strong Bra and Brg (Bunn et al. 1995)
- Ionized region R ≤ 100 AU (Simon et al. 1981, 1983)

AFGL 490 - What has been known before?

- Embedded in a dense cloud core (Hodapp 1994, Kawabe et al. 1984, Snell et al. 1984)
- Poorly collimated high-velocity outflow (Lada & Harvey, 1981)
 t_{dyn} ≈ 2×10⁴ yr (Churchwell, 1999)
- Previous interferometer studies: presence of a huge disk with a diameter ≈ 25 000 AU (Mundy & Adelmann, 1988, Nakamura et al. 1991)

AFGL 490

• Embedded in a dense cloud core (Hodapp 1994, Kawabe et al. 1984, Snell et al. 1984)

 Poorly collimated high-velocity outflow (Lada & Harvey, 1981)
 t_{dyn} ≈ 2x10⁴ yr (Churchwell, 1999)

 Previous interferometer studies: Huge disk-like structure with a diameter ≈ 25 000 AU (Mundy & Adelmann, 1988, Nakamura et al. 1991)

JCMT & IRAM 30m Observations

Mapping in :

- CS J = 2-1, 3-2, 5-4, 7-6, C¹⁸O J = 2-1: IRAM 30m, JCMT

- Continuum SCUBA 450µm, 870µm; 1.3mm MAMBO

Plateau de Bure Interferometer Observations

Mapping in: - CS $J = 2-1 + \lambda 3mm (2.7'' \times 2.2'')$ - C³⁴S J = 2-1, CH₃OH (1.8'' × 1.4'') - C¹⁷O $J = 2-1 + \lambda 1mm (0.9'' \times 0.8'')$

VLA-CD Observations

Mapping in: - CS $J = 1-0 + \lambda7mm$

Plateau de Bure Interferometer Observations in CS J = 2-1

Plateau de Bure Interferometer Observations in CS J = 2-1

AFGL 490

 Clumpy gas ring centered at the 1mm continuum point source

 $C^{17}O$ contour levels: 20%-90% of the peak emission 10% = 1 σ

Color-coded image: 1mm continuum point source, peak intensity = 0.6 Jy beam⁻¹

AFGL 490

- Clumpy gas ring centered at the 1mm continuum point source
- Well separated red- and blue-shifted C¹⁷O emission

Red & blue C¹⁷O contour levels: 30%-90% of the peak emissions

V_{lsr}-Red: -12.5...-9.5 km/s V_{lsr}-Blue: -15.5...-13.4 km/s

Modelling of the C¹⁷O emission

Complete cycle:

Step I 2D model for the continuum emission

Step II 1+1D modelling of the chemistry in the disk

Step III 2D modelling of the line profile

Observed spectra - Simulated line profiles

Schreyer et al. (2006)

Modelling of the $C^{17}O$ emission

Observed spectra - Simulated line profiles

Assumptions for the model:

- Flared-disk model
- Velocity profile $V(r) = V_o(r_o/r)^{-s}$
- Surface density gradient $\Sigma(r) = \Sigma_0(r_0/r)^{-p}$
- Dust grains: MRN-like size distribution (Mathis et al. 1977)

• M_{gas} : M_{dust} = 100

• Age: 0.1 Myr

Modelling of the $C^{17}O$ emission

Iterative Modelling of the C¹⁷O 2-1 line profiles

Observed spectra - Simulated line profiles

Best Fit Results:

Inclination & position angle
 i = 30°±5°

•
$$M_{\star}$$
 = 8...10 M _{\odot}

- Velocity profile $V(r) = V_o(r_o/r)^{-0.5}$
- Surface density gradient $\Sigma(r) = \Sigma_0(r_0/r)^{-1.5}$
- Optical depth $\tau < 0.01$

• *R*_{out} = 1500 AU

MWC 297

B1.5, M_{*}=10 Msun M_{disk}=0.07 Msun Rdisk ~ 80AU No detectable compact

Dust mass requires a flattened disk to be optically visible

VLTI interferometry study (Acke et al. 2008) NIR/MIR emission including the 10 micron Manoj et al. 2007 Silicate emission comes from very compact region (FWHM 1.5 AU) No evidence for inner emission-free gap

(see also the similar B0 star R Mon – Fuente ea. 03, 06; Alonso-Albi ea. 07)

Evolutionary Stages

Rotation and outflow at the onset of MSF IRDC 18223-3, distance ~ 3.7kpc

- Outflow wings +-15 km/s
- Outflow mass 13 M_{sun}
- Outflow rate 3.5x10⁻⁴ M_{sun}/yr
- Dynamical age ~3.7x10⁴ yrs

About 50 M_{sun} in gas vs total 500 M_{sun}

- Δv ~ 2.1 km/s
- Velocity spread ~ 2.5 km/s
- Structure size ~ 25000 AU
- Likely optically thick line?

Fallscheer et al., in prep.

The Disk candidate in IRAS 18089-1732 (HMPO)

A more evolved disk in MSF?

Quanz et al. in prep.

M17-UC1 – Disk or Filament?

RT modeling of a disk candidate in a high-mass protostellar object

Successful modeling of elongation detected orthogonal to the outflow orientation

The Hourglass Close to Her 36 (O7 star in M8)

HST Image in [OIII], [SII], Hα

G5.97-1.17: The View of HST

Red: [SII] Green: [Hα] Blue: [OIII]

Her 36: O7 ZAMS Dist: 2.7"/0.024pc

Ext.: $A_V = 5 \text{ mag}$ $UV_{req} = 5.5 \times 10^{45} \text{ s}^{-1}$ $UV_{prov} = 3.8 \times 10^{45} \text{ s}^{-1}$

 $\dot{M} = 7 \times 10^{-7} M_{\odot} yr^{-1}$

(Stecklum, Henning, Feldt ea. 1998)

Summary

- Disks around early B-type stars exist and disappear rapidly (Typical masses of a few M_{sun} and sizes of ~1000 AU)
- No strong evidence for disks around O-type stars (small disks seem to be present CO)
- We need to determine disk/torus kinematics ...

Integrated T_B in simulated 1000 s / pointing ALMA observation of disk at 0.5 kpc in CH₃CN 220.7472 GHz (Krumholz, Klein, & McKee, 2007, ApJ, 665, 478)