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The Envelope-Disk Connection

Calvet, Hartmann, & Strom (1999)
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Empirical Inference of YSO Accretion History
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Hartmann (1998), based on Kenyon et al. (1990)
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Observed frequency of FU Ori eruptions (last 50 years) is several

times greater than the low-mass star formation rate within 1 kpc =>»
It is thought that all YSO’s undergo multiple eruptions.




Global Core - Disk Formation/Accretion

Simulations

We Employ the Thin-Disk Approximation
(Vorobyov & Basu (2006) has details):

e Integrate vertically (in z-direction) through cloud. Solve
time-dependent equations for profiles in (r,¢) directions. IC’s
from self-similar core collapse calculations.

* With nonuniform mesh, can study large dynamic range of
spatial scales, ~ 104 AU down to several AU

 Allows efficient calculation of long-term evolution even with
very small time stepping due to nonuniform mesh. Can study
disk accretion for ~ 10° yr rather than ~1032 yr (for 3D)

e Can run a very large number of simulations — for statistics
and parameter study

o Last two still not possible for 3D simulations



What's not included in this model (for now)

* Magnetic braking

 Ambipolar diffusion or other non-ideal MHD effects

e Physics of inner disk (~ 5 AU) inside central sink cell

« Magnetorotational instability (can’t occur in thin-disk model)

o Stellar irradiation effects on disk

« Radiative transfer in disk - we use P= P(p), barotropic relation

* Photoevaporation of outer disk
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Mass accretion bursts and the Q-parameter

Black line - mass accretion rate onto the central sink; Red line — the Q-parameter
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The disk is strongly gravitationally unstable when the b)ursts occur




Accretion history of young protostars

: -1
Mass acoretion rate (Mg, v ')

183

1e-4
185
1e-g

1a-7 3

1e-10

<«—— FU Ori outburst

disk

/ accretion

envelope
accretion

01

a4 02 0.3 05 1.0 2.0 a0
Time {Myr)

VelLLO’s?

Vorobyov & Basu (2007)



Spiral structure and clump formation

Just before a burst Quiescent phase
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Gravitationally driven accretion?

* Observations of non-axisymmetric structures in protostellar disks of
Herbig Ae/Be stars AB Aurigae (Fukagawa et al. 2004) and HD 100546
(Grady et al. 2001)
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. . April 18, 2004
Subaru Telescope, National Astronomical Observatory of Japan
Copyright(C) 2004 National Astronomical Observatory of Japan. All rights reserved.




Azimuthally Averaged Spatial Profiles
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Accretion Rate Correlates with Model

Disk Mass

A parameter study of a range of initial core masses
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Accretion Rate also Correlated to Central

Object Mass

Solid circles: time-average (class Il phase) values from models with differing
initial mass. Bars represent variations from mean during same time period.

All other
symbols: data
from Muzerolle
et al. (2005) and
Natta et al.
(2006).

Blue line — best
fit to simulation
averages. Black
line — best fit to
all data points.
Red lines — best
fits to low and
higher mass
regimes of data.
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Bottom Line from Parameter Study

« Can fit mean observed accretion rates using a model of
gravitational torque driven accretion

« Model also produces near-Keplerian rotation and r -3/2
surface density profile in disk

» However, disk masses and disk-to-star mass ratios are a
factor ~10 greater than observational estimates for TTSs and
BDs (Andrews & Williams 2005; Scholz et al. 2006)



Observed disk masses underestimated?

e Grain growth in disks already significant. Standard opacity
requires grain growth to 1 mm at ~100 AU, but what if they
grow further? Larger grains would lead to higher disk mass
estimates (Andrews & Williams 2007; Hartmann et al. 2006)

» Upper envelope of TTS accretion rate dM/dt ~ 10" M ,/yr
implies My, ~ dM/dt x 1 Myr ~ 0.1 M,

« MMSN contains ~ 0.01 M., material, barely enough to make
Jupiter. Extrasolar systems with M sin | up to several Jupiter
masses imply M, >> 0.01 M,

e Chondrule formation models (Desch & Connolly 2002; Boss &
Durisen 2005) require a high density and Mg, ~ 0.1 M,



* Protostellar disks that form self-consistently undergo an
early phase of episodic vigorous gravitational instability
- formation of clumps - FU Ori-type bursts. Very low
accretion states may correspond to VeLLO's.

 Even at late (~ Myr) stages, disks have a sharp edge
and maintain persistent nonaxisymmetric density
fluctuations - non-radial gravitational forces = torgues
that drive accretion at rates comparable to that of CTTSs

» Self-regulation of disk leads to Q ~ const. and to surface
density profile X ~ r 32 ; same slope as MMSN

e For models with ~ 0.5 M ,, and above, can fit observed
dM/dt vs. M. relation.

» Disk mass stays well below stellar mass, but factor ~ 10
larger than observational estimates. Observed disk
masses systematically underestimated?

* The future: detailed comparison of models and data



