X-ray and IR Observations of Young Clusters

Scott Wolk - CxC/CfA

With help from...

- T. Bourke, L. Allen (CfA), S.T. Megeath (Toledo),
- E. Winston (Exeter), R. Gutermuth (Smith) & Many More.

Why Bother Looking at Young Stars in X-rays

- Young stars are X-ray bright
 - + HMS- High energy wind shocks?
 - LMS- Despite pedestrian 5000K, temperatures they have luminous hot coronae.
 - Insight into the interior workings of LMS.
- To identify young stars.
 - After stars lose their disks X-ray surveys are the only way to find young stellar objects
 - → This has allowed us to understand the history of star formation in the galaxy.
- Direct observation of material accreting onto very young stars.
- * X-rays are probably responsible for rapid heating and ionization of protoplanetary disks.

Why Bother Looking at Young Stars in X-rays

- Young stars are X-ray bright
 - + HMS- High energy wind shocks?
 - LMS- Despite pedestrian 5000K, temperatures they have luminous hot coronae.
 - Insight into the interior workings of LMS.
- To identify young stars.
 - After stars lose their disks X-ray surveys are the only way to find young stellar objects
 - + This has allowed us to understand the history of star formation in the galaxy.
- Direct observation of material accreting onto very young stars.
- * X-rays are probably responsible for rapid heating and ionization of protoplanetary disks.

The program: Multiwavelength Studies of Nearby regions of Star Formation

AC 100 11 1 1 1 1	X 1 1/2 1/2 1/2				
PROPERTIES	Infalling Protostar	Evolved Protostar	Classical T Tauri Star	Weak-lined T Tauri Star	Main Sequence Star
Sкетсн				T 🔆	· () ·
Age (years)	104	10 ⁵	10 ⁶ - 10 ⁷	3 10 ⁶ - 10 ⁷	> 10 ⁷
mm/Infrared Class	Class 0	Class I	Class II	Class III	(Class III)
DISK	Yes	Thick	Thick	Thin or Non-existent	Possible Planetary System
X-ray	?	Yes	Strong	Strong	Weak
THERMAL RADIO	Yes	Yes	Yes) No	No
NON-THERMAL RADIO	No	Yes	No ?	1 Yes	Yes

FEIGELSON & MONTMERLE 1999

+ Goals

- Cluster census
- → Transition disk timescales
- → Detect grain growth
- ★ X-rays from protostars
- Effect of X-rays on planet forming disks
 - → especially flares
- ★ X-ray effects on cluster morphology

LkH\alpha101 Cluster

Spitzer Data

IR COLORS OF X-RAY SOURCES

X-ray Decontamination

ORION A

The IRAC counterparts to the X-ray sources, clearly show contamination by IR faint sources. The IR colors can be used to distinguish X-ray sources which appear to be Class II sources from AGN as well as separating Class II and III sources.

X-ray Selection

About 30 X-ray selected transition disks

Stellar Content

XXXX / X/X/X						
Class	0/I	=	Trans.	Ξ	Other PMS?	Total PMS Stars
X-Ray sources	5	41	5	65	26	~116
Spitzer Sources	16	94	9^	(142)*	(52)*	(261-313)*

ORION A

Class	0/I	П	Trans.	III	Total PMS stars
X-Ray Sources	<10	220	31	390-520	~650-750
Spitzer Sources	140	550	65*-80^	(775-1035)*	(1530-1790)*

*FROM SPITZER DATA

*ESTIMATED AFTER CORRECTION

ABOUT 5%

11/14/08

Distance to LkHlpha 101

Concept from Feigelson and Getman (2005)

Fit implies cluster size: 300 pc ~ 200 stars

800pc ~ 350 stars

Best fit 550-700 pc ≥275-310 stars

Consistent with Chandra+Spitzer estimate.

11/14/08

SCOTT WOLK-CFA

10

11/14/08

Scott Wolk -CfA

11

Grain Growth (Winston et al. 2007)

Serpens

Class I only

- Perhaps 100 detected (so far).
- Highly embedded, can only see the hard/hot X-rays.
- Some have detections of Fe I indicative of Xray fluorescence

Protostars

The largest flare seen in the X-ray observation, this object is about 12" from LkH α 101 (directly on a *Spitzer* diffraction spike). The X-ray spectrum shows ~2.3x10²² cm⁻² absorption (~11 A $_{v}$) and a temperature (in flare) of about 6 keV.

- ★ Class I only
- + Perhaps 100 detected (so far).
- Highly embedded, can only see the hard/hot X-rays.
- → Some have detections of Fe I indicative of Xray fluorescence

Protostars

Serpens Winston et al. 2007

Protostars

- Class I only
- Perhaps 100 detected (so far)
- → Highly embedded, can only see the hard/hot X-rays.
- Some have detections of Fe I indicative of X-ray fluorescence
- Trend towards peak temperature in Class "Ib"

COUP Prisinzano et al. 2007

Morphology

RCW 38

- Massive SFR in the Sagittarius -Carinae arm.
- + D~1.7 kpc
- + 10'~4.7 pc
- ★ A face on version of the ONC with the molecular cap in place

11/14/08

RCW 38 Morphology

8μm X-ray

11/14/08

SCOTT WOLK

X-Ray Spectrum of a Flaring Source

→ YSOs are at the characteristic level 75% of the time. Flares are defined to rise rapidly above that level by a significant amount; the median rise is 3.5; only a few rise by factors of 10-100.

channel energy (keV)

- During the COUP, 1-4 flares are observed on average for each source over a 10-day observing period, so the flare repetition time is about 1-2 per week.
- The spectrum always hardens during a flare, so their X-rays are more penetrating as well as more powerful.

- ★ X-rays can be an important source of disk heating.
 - While total energy is small, hard X-rays can penetrate to near the midplane.
- Ionization rate for a sun-like YSO at 1 AU:

$$\zeta = 10^{-8} \text{ s}^{-1}$$

- 8-9 orders of magnitude > galactic cosmic ray Ionization:
 - X-rays can dominate out to 1000
 AU
 - Caveat: ignoring attenuation of Xrays and the effects of cosmic ray transport.
- Nucleosynthesis...

Reactions

 $^{16}O(p, x)^{6}Li$ $^{16}O(p, x)^{7}Li \text{ or } ^{7}Be$ $^{16}O(p, x)^{10}B$ $^{16}O(p, x)^{10}Be$ $^{16}O(p, x)^{11}B$ $^{16}O(^{3} \text{ He, } x)^{6}\text{Li}$ $^{16}O(^{3} \text{ He, } x)^{7}\text{Li or}^{7}\text{Be}$ $^{16}O(^3 \text{ He, } x)^{10}B$ $^{16}O(^3 \text{ He, } x)^{10}\text{Be}$ $^{16}O(^3 \text{ He, } x)^{11}B$ $^{16}O(\alpha, x)^{10}Be$ 24 Mg(3 He, p) 26 A1 25 Mg(3 He, pn) 26 A1 $^{27}\text{Al}(^3\text{ He},\alpha)^{26}\text{Al}$ $^{28}\text{Si}(^{3}\text{ He, }p\alpha)^{26}\text{Al}$ 42Ca(p, pn)41Ca ⁴⁰Ca(α, ³He)⁴¹Ca 40 Ca(α , 3 H) 41 Sc 40 Ca(3 He, 2p) 41 Ca $^{50}\text{Ti}(p, n)^{50}\text{V}$ $^{51}V(p,2n)^{50}V$ $^{52}Cr(p, 2pn)^{50}V$ $^{48}\text{Ti}(^{3}\text{ He, }p)^{50}\text{V}$ ⁴⁹Ti(³ He, pn)⁵⁰V $^{50}\text{Ti}(^{3}\text{ He,p }2n)^{50}\text{V}$ $^{48}\text{Ti}(\alpha, pn)^{50}\text{V}$ 56 Fe(p, x) 53 Mn or 53 Fe 56 Fe(p, α) 53 Mn 53 Cr $(p, n)^{53}$ Mn 138 Ba $(p, n)^{138}$ La

Sounelle et al. (2001)

X-ray Studies of Star Formation

- * The X-ray detection of over thousands of stars, including brown dwarf candidates. X-ray emission originates from Class 0, I, II, and III YSOs.
 - * X-ray sources not associated with any optical/infrared counterpart can trace a yet-to-be-discovered stellar population of deeply embedded, relatively massive cluster members.
 - Changes in observed gas to dust ratios may be a sign of grain growth in dense regions.
- Diffuse emission has been detected in many regions of massive star formation.
 - + 10⁷ K plasma leads to:
 - + 10⁴K ionization fronts
 - + 100 K dust
 - + A bubble can clear dust
 - Less UV extinction
 - + A bad place to be a disk
- (All PMS) stars are variable.
 - Young stars have both constant and flaring X-ray components.
 - X-rays can both heat protostellar disks and cause in situ nucleosynthesis.