Evolution & dispersal of gas discs

Richard Alexander Sterrewacht Leiden

Cathie Clarke, Jim Pringle (Cambridge) Phil Armitage (Colorado), Barbara Ercolano (Cambridge)

Outline

- (Gas) disc evolution theory
 - Observational motivation: timescales & observed properties
 - Basic theory: viscous accretion + photoevaporation
 - Recent models and work in progress
- Observational diagnostics
 - [Nell] emission as a tracer of photoevaporation
- "Transitional" discs
 - Statistical studies and selection biases
 - Discriminating between models
- Summary / speculative hand-waving

Observations of disc evolution

Observational constraints

- Disc lifetimes are ~Myr (gas and dust tracers).
- Lifetimes are diverse: some discs live for < I Myr; CTTs & WTTs co-exist at similar ages.
- Disc masses range from >0.1 M $_{\odot}$ to $\leq 0.001 M_{\odot}$.
- Accretion rates span >10⁻⁷M_{\odot}yr⁻¹ to \leq 10⁻¹⁰M_{\odot}yr⁻¹.
- Termination of (gas) accretion roughly simultaneous with (dust) disc clearing.
- Discs are cleared rapidly (in ~10⁵yr), across entire radial extent of disc.
- Observations of **gas** disc evolution are very limited.

See talks by Calvet, Hernandez, Furlan

Gas evolution processes

- Various processes can affect evolution of gas discs.
- Hollenbach et al. (PP4), considered all and concluded that:
 - "Viscous" evolution dominates for radii \leq 10AU.
 - Photoevaporation dominates for radii \geq 10AU.
- Photoevaporation by O-stars is responsible for the "proplyd" phenomenon seen in the ONC. Johnstone et al. (1998)

(See talk by Williams)

Gas evolution processes

- Various processes can affect evolution of gas discs.
- Hollenbach et al. (PP4), considered all and concluded that:
 - "Viscous" evolution dominates for radii \leq 10AU.
 - Photoevaporation dominates for radii \geq 10AU.
- Photoevaporation by O-stars is responsible for the "proplyd" phenomenon seen in the ONC.
- In this talk I will treat TTs as isolated objects (only "central star" photoevaporation; neglecting cluster dynamics; etc.).
- I will also assume that angular momentum transport ("viscosity") can be modelled using an α-prescription.

- High-energy irradiation creates a hot layer on disc surface.
- Outside some critical radius, hot gas is unbound and flows as a wind (Hollenbach et al. 1994, 2000).
- Length scale: $R_{\rm g} = \frac{G M_*}{c^2}$
- Important cases: EUV (ionizing), FUV (1000-2000Å) and Xray. For a typical T Tauri star:

 $R_{\rm g,EUV} \approx 5 {\rm AU}$ $R_{\rm g,FUV} \approx 100 {\rm AU}$

• Recent reviews: Dullemond et al. (PP5); RDA (2008a).

See posters by Gorti, Hollenbach, Ercolano, Drake

- Models aim to compute mass-loss profile of the wind. $\dot{M}_{
 m wind} = \int 2\pi R \dot{\Sigma}_{
 m wind}(R) dR$ $\dot{\Sigma}_{
 m wind}(R) = 2\rho_{
 m base}(R) v_{
 m launch}(R)$
- In general, this is a complicated problem:

• EUV is the "easy" case:

- Radiative transfer is simple (Strömgren criterion), p_{base} well-defined.
- Flow is isothermal (10⁴K).
- Wind is insensitive to underlying disc structure or accretion rate.
- Analytic models agree reasonably well with numerical simulations.

• EUV is the "easy" case:

- Radiative transfer is simple (Strömgren criterion), p_{base} well-defined.
- Flow is isothermal (10⁴K).
- Wind is insensitive to underlying disc structure or accretion rate.
- Analytic models agree reasonably well with numerical simulations.

- FUV & X-rays are the "hard" case:
 - Radiative transfer is complex (PDR-like, 2-D, $T_{dust} \neq T_{gas}$).
 - Thermal physics in atmosphere depends on underlying disc structure.
 - Incident FUV radiation field depends on accretion rate.
 - Flow geometry is complex ($R_{disc} \approx R_g$).

Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

- For TT parameters, EUV drives a wind at ~10⁻¹⁰M_☉yr⁻¹ from beyond 1-2AU.
- Wind rate constant, accretion rate declines with time.
- Eventually, wind dominates and inner disc drains rapidly (due to viscosity).
- Satisfies the "two-timescale" constraint: rapid clearing after long lifetime (the "UVswitch").

Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

- For TT parameters, EUV drives a wind at ~10⁻¹⁰M_☉yr⁻¹ from beyond 1-2AU.
- Wind rate constant, accretion rate declines with time.
- Eventually, wind dominates and inner disc drains rapidly (due to viscosity).
- Satisfies the "two-timescale" constraint: rapid clearing after long lifetime (the "UVswitch").

Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

- For TT parameters, EUV drives a wind at ~10⁻¹⁰M_☉yr⁻¹ from beyond 1-2AU.
- Wind rate constant, accretion rate declines with time.
- Eventually, wind dominates and inner disc drains rapidly (due to viscosity).
- Satisfies the "two-timescale" constraint: rapid clearing after long lifetime (the "UVswitch").

The outer disc: direct irradiation

- In static wind model disc is assumed to be optically thick to ionizing photons, so the diffuse (recombination) field dominates the wind.
- After the inner disc has drained, radiative transfer problem changes: direct radiation field dominates the wind.

RDA, Clarke & Pringle (2006a)

- Once inner disc has drained, radiative transfer problem changes.
- Direct irradiation of inner disc edge leads to factor of ~10 increase in wind rate.
- Disc is cleared rapidly from inside-out.

RDA, Clarke & Pringle (2006a)

- Once inner disc has drained, radiative transfer problem changes.
- Direct irradiation of inner disc edge leads to factor of ~10 increase in wind rate.
- Disc is cleared rapidly from inside-out.

RDA, Clarke & Pringle (2006b)

Evolution of surface density: $M_{\star} = 1 M_{\odot}$, $\Phi = 10^{42} s^{-1}$

Snapshots at t=0, 2, 4, 5.9, 6.0, 6.01, 6.02, 6.03, 6.04....6.18Myr • "Three-stage" model for disc evolution:

- $\dot{M}_{\text{wind}} \ll \dot{M}_{\text{acc}}$, wind negligible, viscous evolution (few Myr).
- $\dot{M}_{wind} \sim \dot{M}_{acc}$, gap opens, viscous draining of inner disc (~10⁵yr).
- Inner hole, wind clears outer disc (few 10⁵yr).

Timescales and toy SED models show good agreement with data.

FUV photoevaporation

- No complete, time-dependent models to date.
- Two (complementary) approaches:
 - Detailed radiative transfer, simplified hydrodynamics.
 - Detailed hydrodynamics, simplified radiative transfer.
- Mass loss concentrated near outer edge of disc (>50AU). Calculated mass-loss rates are ~10⁻⁸M_☉yr⁻¹ (Gorti & Hollenbach 2008b):

$$\dot{M}_{\rm wind} \times t_{\rm disc} \sim 0.01 {\rm M}_{\odot}$$

• PDR-like region gives rise to strong emission lines, especially in mid/far-IR (e.g. Gorti & Hollenbach 2008a).

See posters by Gorti, Hollenbach, Ercolano, Drake

FUV photoevaporation

See posters by Gorti, Hollenbach, Ercolano, Drake

FUV photoevaporation RDA & Clarke (in prep.)

 $T = T_0 \exp$

- Flow is complex: solution depends on flow topology, and cannot usually be computed analytically.
- Hydro models with "toy" heating used to try and understand flow dynamics.
- Work in progress: no widely-applicable analytic result (yet).

Observing disc photoevaporation

Gas in inner discs:

FEPS upper limits on gas masses in evolved systems within a factor of ~10 of model predictions (Hollenbach et al. 2005; Pascucci et al. 2006).

Estimates of ionizing flux:

Small sample of bright sources suggest ~10⁴²⁻⁴³photon/s (RDA et al. 2005); new data suggest somewhat smaller values (Herczeg et al., 2007b; in prep.). HST COS will improve data greatly.

Emission lines:

Models predict that FUV (and X-ray) irradiation should produce strong emission lines ([OI], H₂, CO, etc.) from PDR-like disc atmosphere (e.g. Gorti & Hollenbach 2008a). Excellent Spitzer/Herschel/SOFIA targets.

Observing disc photoevaporation

Herczeg et al. (2007b; in prep.)

Gas in inner discs:

FEPS upper limits on gas masses in evolved systems within a factor of ~10 of model predictions (Hollenbach et al. 2005; Pascucci et al. 2006).

Estimates of ionizing flux:

Small sample of bright sources suggest ~10⁴²⁻⁴³photon/s (RDA et al. 2005); new data suggest somewhat smaller values (Herczeg et al., 2007b; in prep.). HST COS will improve data greatly.

Emission lines:

Models predict that FUV (and X-ray) irradiation should produce strong emission lines ([OI], H₂, CO, etc.) from PDR-like disc atmosphere (e.g. Gorti & Hollenbach 2008a). Excellent *Spitzer/Herschel/SOFIA* targets.

[Nell] emission

Pascucci et al. (2007); see also Lahuis et al. (2007)

(Detected) line fluxes $\approx 10^{-6}-10^{-5}L_{\odot}$ Equivalent widths $\approx 50-500$ Å

- Spitzer has detected the [Nell]
 12.81 µm line towards >20
 young, ~solar-mass stars.
- Ionization potential of Ne is 21.56eV: line must come from low-density photo-ionized gas.
- Falls in 8-13µm atmospheric window: can be observed from the ground at echelle resolution.
- Does [Nell] emission trace an ionized disc wind?

See talk by Güdel; poster by Hollenbach

Modelling [Nell] line profiles

- Use existing hydrodynamic model of EUV wind (Font et al. 2004) to model line profiles.
- Critical density of [Nell] 12.81µm line is well-matched to density in wind.
- Emission dominated by gas in "launching region": 0.1-2Rg.
- Ideal tracer of photoevaporation.

$$R_{\rm g} = 8.9 \left(\frac{M_*}{M_{\odot}}\right) \text{AU} \qquad n_{\rm g} \simeq 3 \times 10^4 \left(\frac{\Phi}{10^{41} \text{s}^{-1}}\right)^{1/2} \left(\frac{M_*}{1 \text{M}_{\odot}}\right)^{-3/2} \text{ cm}^{-3}$$

i = 90°

R = 30,000

[Nell] 12.81µm line profile

Theoretical profile

[Nell] 12.81µm line profile

 $i = 60^{\circ}$

Theoretical profile

[Nell] 12.81µm line profile

[Nell] 12.81 μ m line profile

i = 30°

R = 30,000

Theoretical profile

[Nell] 12.81 μ m line profile

 $i = 0^{\circ}$

R = 30,000

[Nell] 12.81 μ m line profile

Theoretical profile

[Nell] 12.81µm line profile

Results RDA (2008b)

- Edge-on profile is dominated by rotation. Similar to profile from bound disc atmosphere (Glassgold et al. 2007).
- Face-on profile is broad (~10km/s), and blue-shifted by ~7km/s.
- This blue-shift is unique to the wind, and is detectable at resolution $\lambda/\Delta\lambda \ge 30,000$.
- Predicted line luminosities (few×10⁻⁶L_☉) consistent with Spitzer observations.

Comparison to (the!) observation

- In real data, wind profile will be combined with emission from bound, X-ray-ionized atmosphere (at v=0). Net blue-shift likely 2–5km/s.
- Line observed at R~30,000
 in TW Hya (*i* = 4–7°):

 $FWHM = 21 \pm 4 \text{ km/s}$

Blue-shift = 2 ± 3 km/s

Further similar observations scheduled in coming months...

d'Alessio et al. (2005)

"Transitional" or binaries?

CoKu Tau/4: Ireland & Krauss (2008)

- It seems that a significant fraction of "transitional" discs may in fact be circumbinary discs:
 - CoKu Tau/4: equal mass binary (M~0.6M_☉), separation ~ 8AU.
 - CS Cha: ~0.1M_☉ secondary, ~0.9M_☉ primary, separation ~ 4AU.
- Binaries with a wide range of properties can result in "transitional" SEDs.
- A cautionary note: 10-15% of G- to K-type MS stars are binaries with separations IAU< a <10AU (Duquennoy & Mayor 1991; Halbwachs et al. 2003).

See talk by Kraus

CS Cha: Guenther et al. (2007)

Models of transitional discs

• Several models exist for making gaps/holes in discs, all of which predict similar observable SEDs:

- Dynamical clearing by companions: planets or binaries.
- Photoevaporation/viscous clearing.
- X-ray illumination of inner edge (Chiang & Murray-Clay 2007).
- Photophoresis (Krauss et al. 2007; Krauss & Wurm 2005).
- Dust settling/growth also gives rise to "transitional" SEDs, especially if wavelength coverage is limited.
- Statistical approach seems most promising, but selection effects are crucial: need to separate holes/gaps from settling/growth (and remove binaries).

Identifying samples RDA (2008a)

Data from d'Alessio et al. (1999) & Furlan et al. (2006)

See talk by Scholz (BDs)

Identifying samples RDA (2008a)

See talk by Scholz (BDs)

Identifying samples RDA (2008a)

See talk by Scholz (BDs)

Discriminating between models

RDA & Armitage (2007); updated with data from Najita et al. (2007) & Cieza et al. (2008)

- Disc masses + accretion rates should distinguish between different models of "inner hole" systems (RDA & Armitage 2007; Najita et al. 2007).
- Selection biases seem to be dominant in current samples.

See talks by Chiang, Brittain, Najita, Muzerolle; <u>many</u> posters

Discriminating between models

RDA & Armitage (2007); updated with data from Najita et al. (2007) & Cieza et al. (2008)

- Disc masses + accretion rates should distinguish between different models of "inner hole" systems (RDA & Armitage 2007; Najita et al. 2007).
- Selection biases seem to be dominant in current samples.

See talks by Chiang, Brittain, Najita, Muzerolle; <u>many</u> posters

Discriminating between models

RDA & Armitage (2007); updated with data from Najita et al. (2007) & Cieza et al. (2008)

- Disc masses + accretion rates should distinguish between different models of "inner hole" systems (RDA & Armitage 2007; Najita et al. 2007).
- Selection biases seem to be dominant in current samples.

See talks by Chiang, Brittain, Najita, Muzerolle; <u>many</u> posters

Summary

- Protoplanetary discs evolve, primarily due to "viscosity".
- During this viscous evolution phase, dust grains grow and evolve, and planets (may) form.
- At late times EUV photoevaporation becomes significant and clears the (gas) disc. Such models satisfy available constraints on timescales, and reproduce observed data well.
- Models of FUV photoevaporation remain in progress. Seems likely that this wind can remove a significant fraction of the disc (gas) mass over a ~Myr lifetime.
- Various proposed observations should provide critical tests of current theoretical models in the near future.