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Outline

• (Gas) disc evolution theory
- Observational motivation: timescales & observed properties
- Basic theory: viscous accretion + photoevaporation

- Recent models and work in progress

• Observational diagnostics
- [NeII] emission as a tracer of photoevaporation

• “Transitional” discs
- Statistical studies and selection biases

- Discriminating between models

• Summary / speculative hand-waving



Observations of disc evolution

Muzerolle et al. (2000)Sicilia-Aguilar et al. (2006)



Observational constraints

• Disc lifetimes are ~Myr (gas and dust tracers).

• Lifetimes are diverse: some discs live for <1Myr; 
CTTs & WTTs co-exist at similar ages.

• Disc masses range from >0.1M☉ to ≤0.001M☉.

• Accretion rates span >10-7M☉yr-1 to ≤10-10M☉yr-1.

• Termination of (gas) accretion roughly simultaneous 
with (dust) disc clearing.

• Discs are cleared rapidly (in ~105yr), across entire 
radial extent of disc.

• Observations of gas disc evolution are very limited.

See talks by Calvet, Hernandez, Furlan



Gas evolution processes

• Various processes can affect evolution of gas discs.

• Hollenbach et al. (PP4), considered all and concluded that:
- “Viscous” evolution dominates for radii ≤ 10AU.

- Photoevaporation dominates for radii ≥ 10AU. 

• Photoevaporation by O-stars is responsible for the “proplyd” 
phenomenon seen in the ONC. Johnstone et al. (1998)

(See talk by Williams)
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• Various processes can affect evolution of gas discs.

• Hollenbach et al. (PP4), considered all and concluded that:
- “Viscous” evolution dominates for radii ≤ 10AU.

- Photoevaporation dominates for radii ≥ 10AU. 

• Photoevaporation by O-stars is responsible for the “proplyd” 
phenomenon seen in the ONC.

• In this talk I will treat TTs as isolated objects (only “central 
star” photoevaporation; neglecting cluster dynamics; etc.).

• I will also assume that angular momentum transport 
(“viscosity”) can be modelled using an α-prescription.



Disc photoevaporation

• High-energy irradiation creates a hot layer on disc surface.

• Outside some critical radius, hot gas is unbound and flows 
as a wind (Hollenbach et al. 1994, 2000).

• Length scale:

• Important cases: EUV (ionizing), FUV (1000-2000Å) and X-
ray.  For a typical T Tauri star:

• Recent reviews: Dullemond et al. (PP5); RDA (2008a).

Rg =
GM∗

c2
s

Rg,EUV ≈ 5AU Rg,FUV ≈ 100AU

See posters by Gorti, Hollenbach, Ercolano, Drake



Disc photoevaporation

• Models aim to compute mass-loss profile of the wind.

• In general, this is a complicated problem:

Ṁwind =
∫

2πRΣ̇wind(R)dR

Σ̇wind(R) = 2ρbase(R)vlaunch(R)

ρbase(R)

vlaunch(R)
Hydrodynamics

Radiative 
transfer



Disc photoevaporation

• EUV is the “easy” case:
- Radiative transfer is simple (Strömgren criterion), ρbase well-defined.

- Flow is isothermal (104K).

- Wind is insensitive to underlying disc structure or accretion rate.

- Analytic models agree reasonably well with numerical simulations.

Hollenbach et al. (1994, 2000)



Disc photoevaporation

• EUV is the “easy” case:
- Radiative transfer is simple (Strömgren criterion), ρbase well-defined.

- Flow is isothermal (104K).

- Wind is insensitive to underlying disc structure or accretion rate.

- Analytic models agree reasonably well with numerical simulations.

• FUV & X-rays are the “hard” case:
- Radiative transfer is complex (PDR-like,  2-D,   Tdust ≠ Tgas).

- Thermal physics in atmosphere depends on underlying disc structure.

- Incident FUV radiation field depends on accretion rate.

- Flow geometry is complex (Rdisc ≈ Rg).



EUV + viscous evolution
Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

Similarity solution
(viscous evolution)

• For TT parameters, EUV 
drives a wind at ~10-10M☉yr-1 

from beyond 1-2AU. 

• Wind rate constant, 
accretion rate declines with 
time.

• Eventually, wind dominates 
and inner disc drains rapidly 
(due to viscosity).

• Satisfies the “two-timescale” 
constraint: rapid clearing 
after long lifetime (the “UV-
switch”).
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EUV + viscous evolution
Clarke et al. (2001); Matsuyama et al. (2003); Ruden (2004)

Similarity solution
(viscous evolution)

Wind rate

Viscous evolution + wind

• For TT parameters, EUV 
drives a wind at ~10-10M☉yr-1 

from beyond 1-2AU. 

• Wind rate constant, 
accretion rate declines with 
time.

• Eventually, wind dominates 
and inner disc drains rapidly 
(due to viscosity).

• Satisfies the “two-timescale” 
constraint: rapid clearing 
after long lifetime (the “UV-
switch”).



• In static wind model disc 
is assumed to be 
optically thick to ionizing 
photons, so the diffuse 
(recombination) field 
dominates the wind.

• After the inner disc has 
drained, radiative 
transfer problem 
changes: direct radiation 
field dominates the 
wind.

The outer disc: direct irradiation

Hollenbach et al. (1994)

RDA, Clarke & Pringle et al. (2006a)



• Once inner disc has drained, radiative transfer problem changes.
• Direct irradiation of inner disc edge leads to factor of ~10 increase in 

wind rate.
• Disc is cleared rapidly from inside-out.

Direct photoevaporation
RDA, Clarke & Pringle (2006a)
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wind rate.
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• “Three-stage” model for 
disc evolution:

-                      , wind negligible, 
viscous evolution (few Myr).

-                    , gap opens, 
viscous draining of inner disc 
(~105yr).

- Inner hole, wind clears outer 
disc (few 105yr).

EUV + viscous evolution

Snapshots at t=0, 2, 4, 5.9, 6.0, 6.01, 
6.02, 6.03, 6.04....6.18Myr

RDA, Clarke & Pringle (2006b)

Ṁwind ! Ṁacc

Ṁwind ∼ Ṁacc

Timescales and toy SED models show good agreement with data.



FUV photoevaporation

• No complete, time-dependent models to date.

• Two (complementary) approaches:
- Detailed radiative transfer, simplified hydrodynamics.

- Detailed hydrodynamics, simplified radiative transfer.

• Mass loss concentrated near outer edge of disc (>50AU).  
Calculated mass-loss rates are ~10-8M☉yr-1 (Gorti & 
Hollenbach 2008b):

• PDR-like region gives rise to strong emission lines, 
especially in mid/far-IR (e.g. Gorti & Hollenbach 2008a).

See posters by Gorti, Hollenbach, Ercolano, Drake

Ṁwind × tdisc ∼ 0.01M!
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FUV photoevaporation

• Flow is complex: solution 
depends on flow 
topology, and cannot 
usually be computed 
analytically.

• Hydro models with “toy” 
heating used to try and 
understand flow 
dynamics.

• Work in progress: no 
widely-applicable analytic 
result (yet).

RDA & Clarke (in prep.)

T = T0 exp
(
− AV

AV,crit

)



Pascucci et al. (2006)

Emission lines:  

Models predict that FUV (and X-ray) irradiation should produce strong 
emission lines ([OI], H2, CO, etc.) from PDR-like disc atmosphere (e.g. 
Gorti & Hollenbach 2008a).  Excellent Spitzer/Herschel/SOFIA targets. 

Observing disc photoevaporation
Gas in inner discs:

FEPS upper limits on gas masses in 
evolved systems within a factor of ~10 
of model predictions (Hollenbach et 
al. 2005; Pascucci et al. 2006).

Estimates of ionizing flux:  

Small sample of bright sources suggest 
~1042-43photon/s (RDA et al. 2005); 
new data suggest somewhat smaller 
values (Herczeg et al., 2007b; in prep.).  

HST COS will improve data greatly.
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[NeII] emission

• Spitzer has detected the [NeII] 
12.81μm line towards >20 
young, ~solar-mass stars.

• Ionization potential of Ne is 
21.56eV: line must come from 
low-density photo-ionized gas.

• Falls in 8-13μm atmospheric 
window: can be observed from 
the ground at echelle resolution.

• Does [NeII] emission trace 
an ionized disc wind?

Pascucci et al. (2007); see also Lahuis et al. (2007)

(Detected) line fluxes ≈ 10-6–10-5L☉
Equivalent widths ≈ 50–500Å

See talk by Güdel; poster by Hollenbach



Modelling [NeII] line profiles

• Use existing hydrodynamic model 
of EUV wind (Font et al. 2004) to 
model line profiles.

• Critical density of [NeII] 12.81μm 
line is well-matched to density in 
wind.

• Emission dominated by gas in 
“launching region”: 0.1-2Rg.

• Ideal tracer of photoevaporation.
v = cs = 10km/s

n = ncr = 5×105cm-3

⊗Ω

ng ! 3× 104

(
Φ

1041s−1

)1/2 (
M∗
1M#

)−3/2

cm−3

RDA (2008b)

Rg = 8.9
(

M∗
M"

)
AU



Results

i = 90º

Theoretical profile R = 30,000
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Results
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Results

i = 0º

Theoretical profile R = 30,000



Results

• Edge-on profile is 
dominated by rotation.  
Similar to profile from 
bound disc atmosphere 
(Glassgold et al. 2007).

• Face-on profile is broad 
(~10km/s), and blue-shifted 
by ~7km/s.

• This blue-shift is unique to 
the wind, and is detectable 
at resolution λ/Δλ ≥30,000. 

• Predicted line luminosities 
(few×10-6L☉) consistent 
with Spitzer observations.

RDA (2008b)



Comparison to (the!) observation

• In real data, wind profile will 
be combined with emission 
from bound, X-ray-ionized 
atmosphere (at v=0).  Net 
blue-shift likely 2–5km/s.

• Line observed at R~30,000 
in TW Hya (i = 4–7º):

   FWHM = 21±4 km/s

   Blue-shift = 2±3 km/s

• Further similar observations 
scheduled in coming 
months... Herczeg et al. (2007)



Calvet et al. (2005)

“Transition discs”
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“Transitional” or binaries?
• It seems that a significant fraction of 

“transitional” discs may in fact be 
circumbinary discs:

- CoKu Tau/4: equal mass binary (M~0.6M☉), 
separation ~ 8AU.

- CS Cha: ~0.1M☉ secondary, ~0.9M☉ primary,  
separation ~ 4AU.

• Binaries with a wide range of properties 
can result in  “transitional” SEDs.  

• A cautionary note: 
10-15% of G- to K-type MS stars are 
binaries with separations 1AU< a <10AU 
(Duquennoy & Mayor 1991; Halbwachs 
et al. 2003).

CoKu Tau/4: Ireland & Krauss (2008)

CS Cha: Guenther et al. (2007) See talk by Kraus



Models of transitional discs

• Several models exist for making gaps/holes in discs, all of 
which predict similar observable SEDs:

- Dynamical clearing by companions: planets or binaries.

- Photoevaporation/viscous clearing.

- X-ray illumination of inner edge (Chiang & Murray-Clay 2007).

- Photophoresis (Krauss et al. 2007; Krauss & Wurm 2005).

• Dust settling/growth also gives rise to “transitional” SEDs, 
especially if wavelength coverage is limited.

• Statistical approach seems most promising, but selection 
effects are crucial: need to separate holes/gaps from 
settling/growth (and remove binaries).



Identifying samples

Data from d’Alessio et al. (1999) & Furlan et al. (2006)

Median SED of Taurus CTTs - photometric / Spitzer IRS

Optically thick disc

Optically thin disc (τ=0.05)

RDA (2008a)

See talk by Scholz (BDs)
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Discriminating between models

• Disc masses + accretion rates should distinguish between different models 
of “inner hole” systems (RDA & Armitage 2007; Najita et al. 2007).

• Selection biases seem to be dominant in current samples.

RDA & Armitage (2007); updated with data from Najita et al. (2007) & Cieza et al. (2008)

Wind rate + 
viscosity gives disc 

mass

Decreasing α
Increasing Mp

Ṁacc ! Ṁwind

See talks by Chiang, Brittain, Najita, Muzerolle; many posters



Discriminating between models

• Disc masses + accretion rates should distinguish between different models 
of “inner hole” systems (RDA & Armitage 2007; Najita et al. 2007).

• Selection biases seem to be dominant in current samples.

RDA & Armitage (2007); updated with data from Najita et al. (2007) & Cieza et al. (2008)

Wind rate + 
viscosity gives disc 

mass

Decreasing α
Increasing Mp
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Schematic picture of disc evolution
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Summary

• Protoplanetary discs evolve, primarily due to “viscosity”.

• During this viscous evolution phase, dust grains grow and 
evolve, and planets (may) form.

• At late times EUV photoevaporation becomes significant and 
clears the (gas) disc.  Such models satisfy available 
constraints on timescales, and reproduce observed data well.

• Models of FUV photoevaporation remain in progress.  Seems 
likely that this wind can remove a significant fraction of the 
disc (gas) mass over a ~Myr lifetime.

• Various proposed observations should provide critical tests 
of current theoretical models in the near future.


