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Before Spitzer 

• Grain growth in disks: mm data (Beckwith 1990), median of
 Taurus (D’Alessio et al 2001)

• Disks in transition: “dips” in SEDs with ground-based near-IR,
 IRAS (Strom et al. 1989)

• Silicate feature in emission: few ISO (Natta et al. 2000) and
 ground-based observations (Honda et al. 2003)

• Transitional disks, disks with inner clearing - planets: ground-based
 near-mid-IR, IRAS (Calvet et al. 2002; Rice et al. 2003)

• Debris disks, secondary dust, evolved from  primordial, optically
 thick disks

• Inner disk frequency and emission decrease with age (Hillenbrand
 et al., Haisch et al. 2001)
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The Spitzer era


Allen et al 2004
 Hartmann et al 2005


Except if heavily embedded, Ophiuchus (poster by McClure #61)


CTTS


Disks around Class I

Posters by Tobin ( # 11)
 and Zhu (# 43)
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SEDs of stars surrounded by disks


Furlan et al 2006


IRAC+IRS+MIPS+2MASS+UBVRI+spectral type

SEDs ready for modeling
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Modeling SEDs


Many approaches and codes available

Sophisticated Montecarlo radiative transfer codes

Irradiated accretion disk models with 1.5 D radiative transfer


Issue: surface density distribution?

Free parameter in many modeling efforts

Hayashi distribution Σ∝ R-3/2


Or best fit


Physical motivated Σ
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Most stars surrounded by disks are 
accreting 

Calvet & D’Alessio 2009




7 

Measurement of mass accretion rate 

Gullbring et al. (1998) 

Excess emission over photosphere  ~ Lacc = G M (dM/dt) / R 

Link to disk properties

Ingleby & Calvet 2008
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Irradiated accretion disks 

Consistent with sub/mm high resolution observations

Andrews & Williams 2007
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Viscous disk evolution 
t=0 

Σ α 1/R (similar to steady disk) 

As t increases: 

• Transition between
 dependence 1/R (~ steady
 disk) and exponential at
 larger radius 

• Disk expands, Σ decreases,
 the disk mass falls as 1/t1/2

 (lost to the star) 

Exponential cut-off 
Poster by Hughes (#56) 

Hartmann 2009
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Consistent surface density 

Surface density not a free parameter 
Consistent with dM/dt onto the star 

Mdisk = ∫ Σ 2πR dR ∝ dM/dt /α 

⇒ Using Mdisk as parameter is equivalent to using α 
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Spitzer/IRS data of Taurus (1-2 Myr) 

Furlan et al. 2006 

Silicate emission everywhere

Large range of properties at one age
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Dust properties from SED: Grain growth  

Median SED of Taurus 

amax=0.3µm, ISM 

amax = 1mm 

D’Alessio et al 2001
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Spitzer/IRS spectra of T Tauri stars 

silicate feature 
emission ⇒ 
small grains 

mid-IR,mm⇒ 
large grains 

Dust growth and settling 
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Effects of dust settling in SED

Effects of dust settling conspicuous in IRS range


D’Alessio et al 2006
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Dust settling in Taurus disks

de

pl
et

io
n


Taurus disks consistent with
 1 - 0.1% dust depletion
 (relative to standard dust
-to-gas mass ratio) in upper
 layers 


Furlan et al. 2006, and
 Furlan’s talk
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Dust settling toward midplane


No correlation between mid
-IR slope and sub/mm slope

(poster by Crockett  #45)  
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Where does the flux come from?


Most mid-IR from < 10 AU in settled disks

Sub/mm from outer disk

⇒Shorter evolutionary timescales for dust in inner disk

Consistent with theoretical expectations 


Cumulative flux for different wavelengths 
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No agreement with theoretical predictions 
otherwise


No turbulence


With turbulence


Dullemond & Dominik 2005

Rapid disappearance of small grains

Turbulence enhances problem

No silicate emission

No near IR excess


Fragmentation of aggregates
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Disk evolution


Age not the only parameter
 determing evolution

Initial conditions?
 metallicity? 


What is happening to the
 disks?


Hernandez et al. 2008
 and Hernandez’ talk


Median and quartiles
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Inner disk 
• Stellar magnetic field
 truncates disk at a few stellar
 radii , B ~ few kG (Johns
-Krull & Valenti, 2005)


• Material falls onto star along
 magnetic field lines.


• Sharp transition dust/gas
 (Natta et al 2001; Dullemond
 et al 2001), emission from
 walll dominates near-IR


• Inner gas disk, optically thin 
 Inner gas disk may not be thin in Herbig’s
 stars (poster by Tannirkulam #65), but
 probably is in CTTS (poster by Ingleby #
 46) 
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Mass accretion rate decreases with time 

Hartmann et al. (1998),
 Muzerolle et al. (2001), Calvet
 et al. (2005) 

Fraction of accreting objects decreases with time: not
 explained by viscous evolution 

.50
 .23
 .12
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Evolutionary  effects 

Slope becomes stepper as:

• Degree of settling increases


• Accretion rate decreases


wall


disk


log dM/dt= -10, -9, -8, -7

Σ decreases 


Art by Luis Belerique 
& Rui Azevedo


Inner disk:
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Dust evolution


ε

1

0.1

0.01

0.001


Models for:


⇒Depletion < 0.1% in inner disk upper layers after 5 Myr

(Hernandez et al 2007)
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Transitional disks 

Calvet et al 2002 

TW Hya, 10 Myr old

Taurus 

median


• Near to mid-IR flux deficit
 relative to Taurus median

• Sharp rise 

• Flux at longer λ consistent
 with optically thick emission


Strom et al. 1989, inner disk clearings and disks in transition


Muzerolle’s talk
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Transitional disks in Taurus


Calvet et al 2005 

Rw ~ 24AU 
outer disk + inner
 disk with little dust
 + gap 
(~ 5-24AU) 

Rw ~ 3 AU 
only external disk  

Both accreting 

Optically
 thin
 material
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Imaging of holes with sub/mm interferometry 

Wilner, Andrews’ talks 

IRS spectra finely maps disk structure


GM Aur
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Circumbinary disks 

Forrest et al. 2004;
 D’Alessio et al. 2005 

CoKu Tau 4, ~ 10 AU 
~ 2 Myr 

Binary system

(Ireland & Kraus 2008)

Other cases

HD98800 Furlan et al. 2007

Hen3-600A Uchida et al 2004


Check for companions


Tidal interactions clear inner
 disks


Kraus’ talk

Interesting variability

Poster by Nagel  (#37)
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What agent clears the inner disk regions?

Planets most likely 
 Lubow & d’Angelo 2006:


• Disks more massive than
 expected from (dM/dt)

• Some mass of outer disk into
 planet

• (dM/dt) not indicative of Mdisk
 in TD ⇔low α


Photoevaporation 


Transitional
 disks


Alexander & Armitage 2007


Najita, Strom, & Muzerolle 2007

Alexander’s talk


Planet
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Pre-Transitional Disks: optically thick disks 
with gaps  

UX Tau A 

Increasing flux/ 
optically thick disk 

large excess, 
~optically thick 
disk 

median Taurus SED = 
optically thick full disk 

photosphere 

Espaillat et al. 2007; Brown et al. 2007
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Pre-Transitional Disks: optically thick disks 
with gaps 

UX Tau A 

large excess, 
~optically thick 
disk 

median Taurus SED = 
optically thick full disk 

photosphere 

Optically thick
 inner disk 

Best-fit model 

Espaillat et al. 2007b


Optically thick 
inner disk wall 

Outer 
wall 

Outer 

 disk 

w
al

l Optically     
 thick outer
 disk 

| 56 AU 
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Pre-Transitional Disk of LkCa 15  

• Truncated outer disk at 46 AU (Pietu et al. 2006)

• Binary? No companion M >  0.1 Msun 3-22 AU (Ireland & Krauss
 2008) or larger separations (White & Ghez 2001)
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Pre-Transitional Disk of LkCa 15  

Increasing flux/ 
optically thick disk 

large excess, 
~optically thick 
disk 

median Taurus SED = 
optically thick full disk 

photosphere 

Two alternatives:


thick


thin
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Detailed near-IR spectrum of pre-
transitional disk LkCa 15

Blackbody at T ~ 1500K


Espaillat et al. 2008, 

Poster by Espaillat  #91


2-5 mm SpeX spectrum




34 

Blackbody-like near-IR excess 
between 2-5 mm in full disks of CTTS 

Muzerolle et al. 2003
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Dust-gas Transition 

Monnier & Millan-Gabet 2002
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Detailed near-IR spectra of transitional 
disks


Poster by Espaillat #91


No hot optically thick gas!
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Implications 
Direct detection of gap in optically thick disk

Points to planet formation (Rice et al. 2003, 2007; Quillen et al. 

2004; Alexander & Armitage 2007)

Suggests evolutionary sequence:

Gap opening (pre-TD) → inner disk clearing (TD)

If so,  evidence against inside-out clearing mechanisms: 

photoevaporation (Clarke et al. 2001; MRI erosion of wall 
(Chiang & Murray-Clay 2007)


How the inner disk becomes optically thin? Rapid dust evolution?


“Full” optically 
thick disk


Disk Gaps:Pre-
transitional disks 

Inner Disk Holes: 
Transitional disks 

SSC 
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What have we learned

Three types of disks.

Full disks: they evolve by decreasing their mass and mass
 accretion rate as the original dust growths and settles toward the
 midplane. 

The median emission of disks in a population decreases with
 age, large spread. Age is not the only factor.

Disk frequency decreases with age

Pre-transitional disks: disks with gaps

Transitional disks: disks with inner cleared regions

What is the causal relationship between these types?


“Full” disks

Disk Gaps:Pre-

transitional disks 
Inner Disk Holes: 
Transitional disks 
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Evidence for magnetospheric accretion  
Broad emission lines 
Muzerolle et al. 1998, 2001 

v ~ 0 km/s


v ~ 250 km/s


Excess emission/veiling


velocity




40 

Evidence for magnetospheric accretion  
Broad emission lines 
Muzerolle et al. 1998, 2001 

Redshifted
 absorption if right
 inclination


v ~ 0 km/s


v ~ 250 km/s


Excess emission/veiling 

Calvet & Gullbring 1998
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BP Tau and DM Tau 

BP Tau:

M= 0.79 Msolar

L= 1.34 Lsolar

R=2.39 Rsolar

Age= 1.53 Myrs


DM Tau:

M=0.47 Msolar

L=0.36 Lsolar

R=1.48 Rsolar

Age= 2.82 Myrs 

Ingleby & Calvet 2008
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Magnetospheric Accretion 

Calvet & Gullbring, 1998


• Material reaches photosphere at
 almost the free fall velocity


• Ri = radius where magnetic field
 truncates the disk = 5R

• Emission is characterized by F and f

• F = total energy in column

• f = filling factor
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Accretion shock model: heated photosphere 
emission


Lhp ~ 3/4 Lacc
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Multiple accretion columns


Two column model:

Fhigh = 3 x 1011 erg/cm2/s

fhigh = 0.7%

Flow = 2 x 1010 erg/cm2/s

flow = 11%


dM/t high ~ 2 x 10-8 Msun/yr

dM/dt low ~ 2 x 10-8 Msun/yr


dM/dt tot ~ 4 x 10-8 Msun/yr


high

low 

BP Tau: rJ ~ 0.3 (Edwards et al. 2006)


Single column: dM/dt ~ 3 x 10-8 Msun/yr 



