Coagulation and crystallization of silicates in protoplanetary disks : a c2d Spitzer/IRS survey

Olofsson J., Laboratoire d'Astrophysique de Grenoble, France

Augereau J.-C. van Dishoeck E.F. Merín B. Lahuis F. Dullemond C.P. Oliveira I. Blake G. Boogert A. Brown J. Evans N. Geers V. Knez C. Monin J.-L. Pontoppidan K.

From ISM to planetary systems

Interstellar medium

Silicates : from ISM to planetary systems

- ISM : amorphous grains (> 99%)
- \blacksquare ISM : sub-micronic sized grains (\sim 0.1 $\mu m)$
- Olivine in Earth's crust

High crystallinity fraction (*Mg-rich*) in comets (~40%)

From ISM to planetary systems

Interstellar medium

Silicates : from ISM to planetary systems

- ISM : amorphous grains (> 99%)
- ISM : sub-micronic sized grains (\sim 0.1 μ m)
- Olivine in Earth's crust
- High crystallinity fraction (*Mg-rich*) in comets (~40%)

c2d/IRS sample of Class II disks

Spitzer/IRS

- Infrared spectrum (5-35 μ m)
- 110 spectra of circumstellar disks (more than 70 TTauris)
- Six main star-forming clouds : Perseus, Taurus, Chamaleon, Lupus, Ophiuchus & Serpens

Composition of crystals

Enstatite

- Composition : MgSiO₃
- Solid-state emission features : 21.6, 23.0, 24.5, 28.2 μm

Forsterite

- Composition : Mg₂SiO₄
- Solid-state emission features : 11.3, 16.2, 23.8, 27.6 & 33.6 µm

Spectra zoology

From amorphous to crystalline

- Pristine spectra
- Crystalline spectra

Statistics

Prevalence of crystalline features

Summary

- Spitzer/IRS : crystalline features at $\lambda > 15 \,\mu$ m.
- In our sample, ~75% of the objects with at least one crystalline feature : widespread crystallinity
- Dust strongly processed at this stage of evolution

ロト・日・・ヨ・・ヨ・ りゃつ

Enstatit

Diopside

orsterite

Prevalence of crystalline features

Summary

- Spitzer/IRS : crystalline features at $\lambda > 15 \,\mu$ m.
- In our sample, ~75% of the objects with at least one crystalline feature : widespread crystallinity
- Dust strongly processed at this stage of evolution

Relationship between amorphous and crystalline silicates

$10\,\mu m$ vs C23

- Apparition frequency : uncorrelated
- Line fluxes : uncorrelated

$10\,\mu { m m}$ vs C28

- Apparition frequency : uncorrelated
- Line fluxes : uncorrelated

10 μ m vs 33.6 μ m

- Apparition frequency : uncorrelated
- Line fluxes : uncorrelated

Relationship between crystalline features

Crystalline population

Summary

- 10 µm feature and C23, C28 & 33.6 features are probing two independent dust populations
- C23, C28 and 33.6 µm forsterite feature probably probe one single dust population

Emission at 10 µm "Warm component" Emission C23, C28 & 33.6 *"Cold component"*

Crystalline population

Summary

- 10 µm feature and C23, C28 & 33.6 features are probing two independent dust populations
- C23, C28 and 33.6 μm forsterite feature probably probe one single dust population

Emission at 10 µm "Warm component" Emission C23, C28 & 33.6 *"Cold component"*

Crystalline population

Summary

- 10 µm feature and C23, C28 & 33.6 features are probing two independent dust populations
- C23, C28 and 33.6 μm forsterite feature probably probe one single dust population

Emission at 10 µm *"Warm component"* Emission C23, C28 & 33.6 "Cold component"

Growth of amorphous silicates

Shape versus strength

- Known correlation : shape vs. strength of the amorphous 10 µm
- Used as a proxy for amorphous grain size
- **Typical grain size is** μ m-sized

What about growth of crystalline silicates?

C23 complex

- Similar study : shape vs. strength for C23
- Proxy for crystalline grain size
- \blacksquare Typical grain size is $\mu {\rm m}{\rm -sized}$

Contrast effect ...

- Amorphous features can hide crystalline features
- Theoretical grain opacities
- Detectability of crystalline features as a function of the crystallinity fraction

- Lower crystallinity in the warmer component?
- Models characterizing the distribution of objects as a function of crystallinity

Contrast effect ...

- Amorphous features can hide crystalline features
- Theoretical grain opacities
- Detectability of crystalline features as a function of the crystallinity fraction

- Lower crystallinity in the warmer component?
- Models characterizing the distribution of objects as a function of crystallinity

Contrast effect ...

- Amorphous features can hide crystalline features
- Theoretical grain opacities
- Detectability of crystalline features as a function of the crystallinity fraction

- Lower crystallinity in the warmer component?
- Models characterizing the distribution of objects as a function of crystallinity

Contrast effect ...

- Amorphous features can hide crystalline features
- Theoretical grain opacities
- Detectability of crystalline features as a function of the crystallinity fraction

- Lower crystallinity in the warmer component?
- Models characterizing the distribution of objects as a function of crystallinity

Contrast effect ...

- Amorphous features can hide crystalline features
- Theoretical grain opacities
- Detectability of crystalline features as a function of the crystallinity fraction

- Lower crystallinity in the warmer component?
- Models characterizing the distribution of objects as a function of crystallinity

Dust mineralogy

- ISM mineralogy : typical grain size micronic, widespread crystallinity
- Two independent grain populations (Warm component vs. Cold component)
- Systematic presence of μm-sized grains in disks upper layers : efficient vertical mixing (turbulence?), compensating for grain sedimentation
- Presence of crystalline grains in cold regions : (1) radial transportation mechanisms : turbulence, winds (2) crystallization process at cold temperatures

- Spitzer/IRS : new observational constraints on protoplanetary disks, strong needs for :
 - Modeling
 - Complementary observations of the inner disk regions

Dust mineralogy

- ISM mineralogy : typical grain size micronic, widespread crystallinity
- Two independent grain populations (Warm component vs. Cold component)
- Systematic presence of μm-sized grains in disks upper layers : efficient vertical mixing (turbulence?), compensating for grain sedimentation
- Presence of crystalline grains in cold regions : (1) radial transportation mechanisms : turbulence, winds (2) crystallization process at cold temperatures

- Spitzer/IRS : new observational constraints on protoplanetary disks, strong needs for :
 - Modeling
 - Complementary observations of the inner disk regions

Dust mineralogy

- ISM mineralogy : typical grain size micronic, widespread crystallinity
- Two independent grain populations (Warm component vs. Cold component)
- Systematic presence of µm-sized grains in disks upper layers : efficient vertical mixing (turbulence?), compensating for grain sedimentation
- Presence of crystalline grains in cold regions : (1) radial transportation mechanisms : turbulence, winds (2) crystallization process at cold temperatures

- Spitzer/IRS : new observational constraints on protoplanetary disks, strong needs for :
 - Modeling
 - Complementary observations of the inner disk regions

Dust mineralogy

- ISM mineralogy : typical grain size micronic, widespread crystallinity
- Two independent grain populations (Warm component vs. Cold component)
- Systematic presence of µm-sized grains in disks upper layers : efficient vertical mixing (turbulence?), compensating for grain sedimentation
- Presence of crystalline grains in cold regions : (1) radial transportation mechanisms : turbulence, winds (2) crystallization process at cold temperatures

- Spitzer/IRS : new observational constraints on protoplanetary disks, strong needs for :
 - Modeling
 - Complementary observations of the inner disk regions

Dust mineralogy

- ISM mineralogy : typical grain size micronic, widespread crystallinity
- Two independent grain populations (Warm component vs. Cold component)
- Systematic presence of µm-sized grains in disks upper layers : efficient vertical mixing (turbulence?), compensating for grain sedimentation
- Presence of crystalline grains in cold regions : (1) radial transportation mechanisms : turbulence, winds (2) crystallization process at cold temperatures

- Spitzer/IRS : new observational constraints on protoplanetary disks, strong needs for :
 - Modeling
 - Complementary observations of the inner disk regions

MHD simulations, Fromang & Nelson, submitted

Sedimentation

Global MHD simulations of protoplanetary disks, using different grain sizes : help us understanding the sedimentation process

Detailled mineralogic analysis

Compositional fitting

- Goal : deriving silicate mineralogy by fitting spectra
 - Two independent dust populations
 - 5 compositions and 2 grain sizes

Returns compositions, grain sizes and temperatures for each population

Bouy et al. 2008

- Warm component : ~5% crystalline
- Cold component : ~40% crystalline

Merìn et al. 2007

- Warm component : ~10% crystalline
- Cold component : ~5% crystalline

Conclusion Modeling Complementary observations

Detailled mineralogic analysis

Compositional fitting

- Goal : deriving silicate mineralogy by fitting spectra
 - Two independent dust populations
 - 5 compositions and 2 grain sizes

Returns compositions, grain sizes and temperatures for each population

Bouy et al. 2008

- Warm component : ~5% crystalline
- Cold component : ~40% crystalline

Merìn et al. 2007

- Warm component : ~10% crystalline
- Cold component : ~5% crystalline

Detailled mineralogic analysis

Compositional fitting

- Goal : deriving silicate mineralogy by fitting spectra
 - Two independent dust populations
 - 5 compositions and 2 grain sizes

Returns compositions, grain sizes and temperatures for each population

Bouy et al. 2008

- Warm component : ~5% crystalline
- Cold component : ~40% crystalline

Merìn et al. 2007

- Warm component : ~10% crystalline
- Cold component : ~5% crystalline

Olofsson Johan

Dust mineralogy

Olofsson Johan

Dust mineralogy

Spatially resolving Class II disks : near-IR interferometry

AMBER/VLTI

- Spatial informations on the inner regions
 - TTauri SR21 (reduction : Eric Tatulli)
 - Resolved : V² ~0.5 (<1)
 - No strong spectral dependency
- Constrain the inner disk morphology

Spatially resolving Class II disks : near-IR interferometry

AMBER/VLTI

- Spatial informations on the inner regions
 - TTauri SR21 (reduction : Eric Tatulli)
 - Resolved : V² ~0.5 (<1)
 - No strong spectral dependency
- Constrain the inner disk morphology

Thank you for your attention

Publications

- Olofsson et al. in prep, "C2D Spitzer-IRS spectra of disk around T Tauri stars. IV Crystalline silicates"
- Lahuis et al. 2007, "C2D Spitzer-IRS spectra of disk around T Tauri stars. III [Ne II], [Fe I] and H₂ gas phase lines"
- Geers et al. 2006, "C2D Spitzer-IRS spectra of disk around T Tauri stars. II PAH emission features"
- Kessler-Silacci et al. 2006, "C2D Spitzer-IRS spectra of disk around T Tauri stars. I Silicate emission and grain growth"
- Merín et al. 2007, "Abundant crystalline silicates in the disk of a very low mass star"