## Spitzer and Studies of Gas in the Planet Formation Region of Disks

#### Joan Najita (NOAO) John Carr (Naval Research Laboratory)

With input from: Andres Carmona Ilaria Pascucci

## **Spitzer Highlights**

#### Molecular hydrogen is a challenging diagnostic.

• Likely carries most of the mass, but...

#### **Spitzer suggests exciting alternatives!**

- **Nell** commonly detected...from the ionized disk surface?
- Organic molecules, OH, and water detected commonly from the terrestrial planet region of disks

#### Transition object spectra can differ from CTTS spectra.

• What is the nature of transition objects?

### **Disk Spectral Lines**

#### **Emission Lines**

#### **Absorption Lines**



### Gaseous Probes of Inner Disks (Pre-Spitzer)

| When  | New Diagnostic                        | Temp  | Comment             |
|-------|---------------------------------------|-------|---------------------|
| 80s   | FU Ori disk atmospheres               |       | Rare!               |
| 80s   | CO overtone disk emission             | >2000 | Less rare           |
| 1994+ | $H_2O$ 2µm disk em. (CSHELL)          | ~2000 | CO overtone sources |
| 1995+ | CO 4.7µm disk em. (CSHELL)            | ~1500 |                     |
| 1995  | OH 3 $\mu$ m disk em. (CSHELL)        |       | SVS-13              |
| 2000+ | H <sub>2</sub> NIR disk em. (Phoenix) | 1000? | CTTS, I WTTS        |
| 2001  | H <sub>2</sub> UV disk em. (HST/STIS) | ~2000 | TW Hya+             |
| 2001  | H <sub>2</sub> MIR em. (ISO)          | 150?  | TTS & older stars   |

ISO indicated  $H_2$  em. from 150K gas (r > 1AU) in disks is not rare! Surprising and exciting: possible contributions from diffuse ISM, shocks, jets (low critical density)?

### Gaseous Probes of Inner Disks (Pre-Spitzer)



#### Temperatures 100 - few 1000K, high densities

- » Molecules abundant in gas phase
- » Excitation of IR ro-vibrational transitions

# MIR H<sub>2</sub> Emission is Weaker than Reported by ISO

- Although H<sub>2</sub> is likely abundant, the conditions needed for emission (deep temperature inversion + significant dust settling or grain growth) are rarely met.
- Spitzer: TTS (c2d--Lahuis et al. 2007); >3Myr sources (FEPS--Hollenbach et al. 2005; Pascucci et a. 2007); Debris disks (Chen et al. 2007); others
- Ground-based: AB Aur (Richter et al. 2002; Sheret et al. 2003), ISO detections (Sako et al. 2005); surveys of TTS and HAB (Carmona et al. 2007; Bitner et al. 2008; Martin-Zaidi et al. 2008)

## **MIR H<sub>2</sub> Detections**



• FWHM ~10 km/s is typical (survey: Bitner et al. 2008).

## NIR H<sub>2</sub>

- Thermal excitation requires ~1000K
- Emission from a disk surface irradiated by UV and X-rays?



- ~15/50 detections plausibly from a disk (compact, centered on star and at stellar velocity; Bary et al. 2008 & refs therein).
- $H_2$  flux not well correlated with  $L_x$ ; other effects significant.
- Poster #34 by Hogerheijde on DoAr21.

## UV H<sub>2</sub>

- UV H<sub>2</sub> detected in essentially all accreting TTS (Herczeg et al. 2002, 2004, 2005; Walter et al. 2003; Calvet et a. 2004; bergin et al. 2004; Gizis et al. 2005; archival).
- From warm (1000-3000K) gas pumped by stellar Lya. Temp similar to that needed for NIR H<sub>2</sub> and predicted surface temps of disks irradiated by UV and X-rays (e.g., Glassgold et al. 2004, Kamp & Dullemond 2004; Nomura & Millar 2005).
- Arises from outflows (blueshifted, extended) or disks (centered on star and at stellar velocity, compact: within few AU) (Herczeg et al. 2006)
- Poster #46 by Laura Ingleby

## H<sub>2</sub> and CO

- CO fundamental emission selectively probes higher densities than H<sub>2</sub>
- If widths indicate disk rotation, they suggest an ordering in radius of CO < UV H<sub>2</sub> < NIR H<sub>2</sub> < MIR H<sub>2</sub>

| Diagnostic | FWHM  | R (AU) | References                                 |
|------------|-------|--------|--------------------------------------------|
| CO fund.   | ~80   | < 1    | Najita et al. 2003                         |
| UV H2      | 20-50 | < few  | Herczeg et al. 2006;<br>Ardila et al. 2002 |
| NIR H2     | 10-20 | 2-10s  | Bary et al. 2008                           |
| MIR H2     | ~10   | 10-50  | Bitner et al. 2008                         |

## **Nell From X-ray Irradiated Disks**



... producing bright [NeII] emission from 4000K surface extending over  $\Sigma = 10^{19}$ - $10^{20}$  cm<sup>-2</sup> and out to 20 AU





Observed line strengths similar to predicted values.





## **Origin of Nell: Demographics**

- Early relation between Nell and L<sub>X</sub>, Mdot (Pascucci et al. 2007, Espaillat et al. 2007)
- More extensive recent study (talk by M. Guedel):
  - L<sub>X</sub> plays a role, but other parameters also matter.
  - Possible contributions from outflows, disks, and...
- Variability of NeII

(Poster #60 by Leisenring)



#### **Nell Emission at High Resolution: TW Hya**



Herczeg et al. (2007) Gemini/MICHELLE R ~ 30,000

Line is symmetric, approximately at RV of star

- FWHM (21 km/s) is broader than expected for i=3.
- Formation at 0.1 AU, turbulence, or photoevaporation.

### **Nell Line Profiles vs. Inclination**

| Scenario for NeII<br>line width | At larger i, line<br>profile is |
|---------------------------------|---------------------------------|
| Rotation                        | Broader                         |
| Turbulence                      | Unchanged                       |
| Photoevaporation                | Lower velocity;<br>blueshifted  |

### **Nell Emission at High Resolution: AA Tau**



Najita, Bitner, Herczeg, Richter, Lacy et al., in prep Gemini/TEXES R ~ 50,000

- Line is approx. symmetric and at RV of star
- Profile is consistent with double-peaked
- Narrower than CO fundamental emission

Broader NeII for higher i=75 of AA Tau consistent with disk origin. But need larger sample, better profiles.

#### Organic Molecules in Absorption: IRS 46 Lahuis et al. 2006



- C<sub>2</sub>H<sub>2</sub>, HCN, CO<sub>2</sub> detected in absorption (700-300K).
- NIR CO and HCN is blueshifted from cloud -20 km/s.
   Origin in a disk atmosphere or disk wind?
- Such absorption is rare; ~1/100 sources in c2d.

#### **Organic Molecules in Absorption: GV Tau**



- •C<sub>2</sub>H<sub>2</sub>, HCN, CO<sub>2</sub> detected in absorption (T=550 for HCN)
- •3μm HCN ~at cloud velocity; absorption in a disk atmosphere?
- •Source is very bright in MIR; enables study of other molecules

## MIR Molecular Absorption at High Spectral Resolution



Gemini/TEXES (R=100,000) FWZI ~ 20 km/s

Can detect molecules w/o strong bands that Spitzer does not detect.

Study relative abundances in disk atmospheres.



#### Spitzer IRS Spectrum of a Typical T Tauri Star



#### Spitzer IRS Spectrum of a Typical T Tauri Star



#### **Continuum-subtracted T Tauri Star Spectrum**



Lines of water throughout (\*)

#### **Molecular Emission Properties**

| Molecule                      | Т (К) | N (10 <sup>16</sup> cm <sup>-2</sup> ) | R (AU) |
|-------------------------------|-------|----------------------------------------|--------|
| H <sub>2</sub> O              | 575   | 65                                     | 2.1    |
| OH                            | 525   | 8.1                                    | 2.2    |
| HCN                           | 650   | 6.5                                    | 0.6    |
| C <sub>2</sub> H <sub>2</sub> | 650   | 0.81                                   | 0.6    |
| CO <sub>2</sub>               | 350   | 0.2-13                                 | 1.2    |
| СО                            | 900   | 49                                     | 0.7    |

Temperatures and emitting areas consistent with an origin in the terrestrial planet region of the disk

### H<sub>2</sub>O Rotational Emission Line Resolved



Line profiles, temperatures, and emitting areas indicate origin in planet formation region of disk

## **Molecular Probes of Inner Disks**



### **AA Tau Molecular Abundances**

SiO

H, O, CH, OH, NH3

T(gas)=200-1000 K T(dust)~90 K ~60 K

complex organics



Higher abundances than hot cores
→Molecular synthesis in disks
→Similar chemistry to hot cores?



0,

ice

~20 K

~45 K

### **Molecular Inventories**

Starting to probe molecular processing in disks!



| Relative         | Comets |           |               | Disks                     | Pre-Infall        |
|------------------|--------|-----------|---------------|---------------------------|-------------------|
| Abundances       | Halley | Hyakutake | Hale-<br>Bopp | Inner Disk<br>Atmospheres | Orion Hot<br>Core |
| H <sub>2</sub> O | 100    | 100       | 100           | 100                       | >100              |
| CO               | 15     | 6-30      | 20            | 200-1000                  | 1000              |
| CO <sub>2</sub>  | 3      | 2-4       | 6-20          | 0.1-3                     | 2-10              |
| $C_2H_2$         | -      | 0.5       | 0.1           | 0.01-1                    | 3-10              |
| HCN              | 0.1    | 0.1       | 0.25          | 0.1-10                    | 4                 |
| NH <sub>3</sub>  | 0.1-2  | 0.5       | 0.7-2         | <1                        | 8                 |

### Related Result Salyk et al. (2008)



- H<sub>2</sub>O, CO<sub>2</sub>, OH emission from T Tauri stars DR Tau and AS 205 N
- From warm ~1000 K inner disk?
- Complementary high resolution NIR spectroscopy of CO, H<sub>2</sub>O, OH

## **Molecular Emission is Common, Diverse**



- Relative strengths of molecular features vary.
- Abundances are diverse.



## **Can Abundances Probe Icy Bodies?**

Problem: planetesimals (~1 km) and protoplanets (~ $M_{Mars}$ ) are too small to open gaps. How to detect them?



Cuzzi & Zahnle 2004 Ciesla & Cuzzi 2007

Large (> 1km), non-migrating bodies dehydrate inner disk (low  $H_2O$ ); increases C/O; enhances organic molecules?

## What Can We Learn from Surface Abundances?

#### May be affected by:

Irradiation (UV, X-rays) Radial & vertical mixing Accretion Grain growth & settling Planetesimal migration etc.

#### **Measurable demographics:**

L<sub>x</sub>, L<sub>UV</sub> Mdot SED shape Silicate feature morphology Crystallinity

**Need a big survey:** Carr, Blake, van Dishoeck, Pontoppidan, Salyk, Lahuis, & Najita (GO5)

## Probing Organic Molecules with Low Res IRS data



Can detect and recover trends in relative strengths of strong molecular bands in low res IRS spectra (Teske et al. poster).



 $HCN/C_2H_2$  strength differs in

- CTTS (>1)
- Brown dwarfs (<1)

(Pascucci et al. poster)

## **Transition Object SEDs imply evolution**





Optically thin inner region (< R<sub>hole</sub> = 1-50 AU) Optically thick outer disk (> R<sub>hole</sub>)



| Stage                    | Outer Disk<br>Mass | Stellar Mdot | Gas w/in R <sub>hole</sub> |
|--------------------------|--------------------|--------------|----------------------------|
| Grain Growth             | Any                | CTTS         | Fills R <sub>hole</sub>    |
| ∼1 M <sub>J</sub> Planet | High               | ~0.1 CTTS    | R < R <sub>inner</sub>     |
| ∼5 M <sub>J</sub> Planet | Very High          | None         | None                       |
| Photo-<br>evaporation*   | Low                | None         | None                       |

\* Poster #86 (Cieza) discusses evidence for this scenario.

### **Demographics: M**disk vs. Stellar Mdot



Transition objects:

- •10 x lower accretion rates for their disk masses.
- •4 x higher disk masses

Black = non-transition Crosses = transition

## **Gaseous Probes of Inner Disks**



#### New diagnostics from Spitzer

## **Gas in Transitional Disks**

|         | <b>R</b> <sub>hole</sub> | Tracer | FWHM  | Ref         |
|---------|--------------------------|--------|-------|-------------|
| TW Hya  | 4                        | СО     | 8.3   | Salyk07     |
|         |                          | H2 UV  | 14    | Herczeg06   |
|         |                          | H2 NIR | <13.6 | Weintr.00   |
|         |                          | Nell   | 22    | Herczeg07   |
| DM Tau  | 3                        | H2 UV  |       | Bergin04    |
|         |                          | Nell   |       | Espaillat07 |
| GM Aur  | 24                       | СО     | 50    | Salyk07     |
|         |                          | H2 UV  |       | Bergin04    |
|         |                          | H2 NIR | ~10?  | Bary08?     |
|         |                          | Nell   | ~15   | Najita08    |
| LkCa 15 | 46                       | СО     | 80    | Najita03    |
|         |                          | H2 UV  |       | Bergin04    |
|         |                          | H2 NIR | ~10   | Bary03      |
| CS Cha  | 43                       | H2 NIR | 13    | Bary08      |
|         |                          | Nell   |       | Espaillat07 |



- CO: gas in the inner (accretion) disk;
- Where do other tracers arise?

#### A typical CTTS and a Transition Object



Transition Objects lack strong molecular emission in SH

- •Missing gas at a few AU?
- •Or low excitation due to low accretion?
- Need theory...or try empirical approach?

## **Theories of Gaseous Disk Atmospheres**

| Species                    | Studies                                                                                       |  |
|----------------------------|-----------------------------------------------------------------------------------------------|--|
| Atomic, $H_2$ , CO, $H_2O$ | Glassgold et al. 2004, 2007, Meijerink et al.<br>2007+poster                                  |  |
|                            | Kamp & Dullemond 2004+<br>Jonkheid et al. 2004+                                               |  |
|                            | Gorti & Hollenbach 2008 + posters                                                             |  |
| Focus on H <sub>2</sub>    | Nomura & Millar 2005,<br>Nomura et al. 2007 + poster                                          |  |
| Focus on Atomic            | Ercolano et al. 2008 + poster                                                                 |  |
| Water and Organics         | Markwick et al. 2002<br>Agundez et al. 2008<br>Woods & Willacy 2008<br>Poster by #31 M. Kress |  |

Note: different assumptions about heating processes, chemistry, gaseous hydrostatic equilibrium.

#### CO Line Profile of V836 Tau Najita, Crockett, Carr 2008





## Truncated disk?



Low excitation due to low accretion rate?

Line profile indicates CO emission from 0.06-0.4 AU Even after correcting for stellar CO absorption.

#### CO Profiles of TOs V836 Tau and LkCa 15 Najita, Crockett, Carr 2008

Both have low accretion rates (~ $10^{-9}$  M<sub>sun</sub>/yr) and weak NIR excesses.



CO from 0.06-0.4 AU Look at other diagnostics for corroborating evidence -- expect an emission deficit at 25-40 km/s CO emission to >1-2 AU. (Similar to other CTTS.)

## Probing Disk Structure with UV Fluorescent CO Emission

- UV fluorescence can light up even cool gas and reveal its presence.
- Spatially resolved CO in HD141569 shows lack of emission within 10 AU (Goto et al. 2006).
- Lack of high velocity wings in UV fluorescent CO emission from HD141569 indicates a true CO inner hole (Brittain et al. 2007).
- Similar situation for HD100546 (talk by S. Brittain)



Goto et al. 2006

## **Spitzer Highlights**

#### Molecular hydrogen is a challenging diagnostic.

 $\diamond$  Likely carries most of the mass, but emission is weak.

#### **Spitzer suggests exciting alternatives!**

 $\diamond$  **Nell** commonly detected.

- Line strengths similar to predictions for irradiated disks.
- Line profiles consistent with disk origin (so far).
- Profiles and demographics useful to understand origin.

Organic molecules, OH, and water detected from the terrestrial planet region of disks.

- In absorption: rarer, can probe large column densities
- In emission: common, abundances are diverse
- Study of larger samples needed to interpret diversity

## **Spitzer Highlights**

#### Transition object spectra differ from CTTS spectra.

At Taurus age, transition objects have low accretion rates for their disk masses.

#### ♦ Spectral diagnostics:

- Diagnostics of gaseous inner disks of CTTS are present.
- Spitzer spectra differ: low column density or low excitation at distances of several AU?
- $\diamond$  To interpret diagnostics:
  - Use improved theory
  - Try empirical approach
  - UV fluorescence is a useful tool.