Debris Disks at Millimeter Wavelengths: First Mapping with CARMA

Holly Maness (UC Berkeley)

Collaborators: Mike Fitzgerald, Roberta Paladini, Paul Kalas, Gaspard Duchene, Jonathan Williams, James Graham Special thanks: Stuartt Corder, John Carpenter, CARMA Integration Team

Why millimeter interferometery?

- Different wavelengths probe different dust (e.g., millimeter traces large dust)
- To test models, need resolved observations spanning a wide range in wavelength

Resonant debris disk models, Wyatt (2006):

Intermediate-sized grains

Small grains

Why millimeter interferometery?

- Few disks with images spanning more than a decade in wavelength
- Therefore, observe small scattered-light disks at high resolution with millimeter interferometers

Resolved sources \rightarrow

Why CARMA?

- Unprecedented image fidelity: more antennas than any other (sub)mm array to date
- Improved site relative to precursor OVRO and BIMA arrays
- Comparable sensitivity to past / current facilities (currently $1 \mathrm{mJy}^{\text {beam }}{ }^{-1}$ in 8 -hr track, will improve to $0.6 \mathrm{mJy}^{\mathrm{mb}}{ }^{-1}$ this spring)
- The bad news: must target brightest sources with current generation arrays

Results: HD 32297

(Maness et al. 2008)

- A5V star, 30 Myr, 112 pc
- Brightness asymmetry in scattered-light, NOT observed in the mid-infrared
- CARMA map also shows an asymmetry

Results: HD 32297

(Maness et al. 2008)

-SED modeling corroborates evidence in images for separate grain populations
-Future dynamical modeling can test origin of observational results

Resonant debris disk models, Wyatt (2006):
Large grains Intermediate-sized grains Small grains

Results: 49 Ceti

(Maness et al., in prep)

- A1V star, 8 Myr, 61 pc
- Dust imaged in mid-infrared contributes negligibly to observed excess
- Additional extended disk of large grains needed to explain SED

Results: 49 Ceti

(Maness et al., in prep)
-CARMA map reveals large grain population previously only hypothesized from the SED

- New map allows detailed study of disk structure and chemistry at this late transitional stage

Results: HD 107146
 (Corder \& Carpenter)

- G2V star, 30-100 Myr, 30 pc

Results: HD 107146

(Corder \& Carpenter)

- Depression in dust distribution inwards of approximately 50 AU
- Ring substructure possibly points to a planetary-induced resonance

Future Prospects

- Sensitivity limitations will continue to make this field challenging, but...
- Roughly 5 more resolved debris disks are accessible to (sub)mm interferometers TODAY.
- Another ~ 5 will be accessible within the next year, following instrument upgrades.
- Upcoming surveys (e.g., Herschel, SCUBA-2) will identify somewhere between a few to tens of new targets suitable for high resolution follow-up.

Summary

-CARMA is helping to expand the number of debris disks with resolved observations spanning several decades in wavelength; these multi-wavelength data sets provide crucial information for dynamical modeling.

