Disks and their evolution: future prospects

This is NOT a conference summary!

Ewine F. van Dishoeck Leiden Observatory / Max-Planck für Extraterrestrische Physik

With thanks to many colleagues for providing input!

Serpens core, IR image 2'x2' VLT-Hawk-I

Disks in art....

Miró: red disk

China: Bi-disk with grains

....And their evolution

Primordial disk

Phaistos disk Crete ~1600 BC

'Transitional' disk

© roadsideamerica.com

Used by G. Rieke in first Spitzer press release

Modern disk

Age is not the only parameter determining evolution!

First fruits

Edouard Vuillard 1899

Norton Simon Museum Pasadena

- In "First Fruits," the decorative pattern takes precedence over the objects represented and unifies the painted surface?
- Inspiration for Mike Werner's et al. 'First Fruits' ARA&A 2005 review?

Some general thoughts

- Spitzer has been a *huge* success
- Disk science is evolving rapidly
 - Recall that definitive proof of disks came <15 yr ago</p>
- Golden age for disk studies with so many topclass IR and mm facilities in this and next decade
- Subsequent decades may not be as rich in major new IR/mm facilities => make best use of what will be there!

Need broad wavelength coverage

Many source lists for future facilities will come from large-scale Spitzer surveys, at least for low-mass YSOs Class 0-II at < 1 kpc

⇒Complete, unbiased catalogs with thousands of sources, many of which are still poorly characterized

Why we need broad wavelength coverage

	Optical & near-IR	Mid-IR 3-28 µm	Far-IR 28-350 µm	Submm 0.3-3 mm	Radio cm
Cont	Stars	Warm dust	Cooler dust, SED peak	Cold dust	Large grains, ionized gas
Solid		Silicates, oxides, ices, PAHs,	Hydrous silicates, ices, carbonates		
Gas	[O I] 6300Å	Simple (symmetric) molecules	H ₂ O, OH, hot CO, [OI], [C II]	Myriad of molecules	Heavy mol, H

See also diagram by Millan-Gabet et al. 2007

Panchromatic view

Future facilities have jump of factor 10-100 in sensitivity!

This talk

- Few words about status of each of the major future facilities
- Illustrate main questions for each evolutionary stage with a few recent examples
- Focus mostly on low-mass star formation

WISE

- 40 cm telescope
- All-sky survey at 3.3,
 4.7, 12 and 23 μm
- Sensitivity factor 500 better than IRAS
- Launch late 2009

Strength

- Unbiased survey for primordial and debris disk fraction OUTSIDE clouds
 - ~7000 G stars, 26000 A stars, 240 M0 stars
- Kinematics young stellar groups and associations (proper motions with 2MASS)

JWST

- On schedule for a late 2013 launch
- All key technologies reached appropriate technology readiness in 2007; approved for implementation in 2008

Flight mirrors in production

- Flight instruments being built and tested
- **Today To be shipped to Goddard in early 2010**

2014 2015 2016 2017 2008 2009 2010 2011 2000 2001 2002 2003 2004 2005 2006 2007 2012 2013 2018 2019 1999 **Concept Development** Design, Fabrication, Assembly and Test science operations Phase A Phase B Phase C/D Phase E ICR T-NAR Formulation Launch

JWST Instruments

- NIRCAM 0.6-5 µm 2'x2'
- NIRSPEC 1-5 μm
 - Multi-object R=1000
 - IFU R=3000
- MIRI 5-28 μm
 - Imager
 - IFU R=3000
- Tunable Filter Imager
 - 1.5-5 μm, R~100

MIRI flight hardware

Example: JWST-MIRI spectrometer sensitivity

Gain by order of magnitude in spatial resolution with Spitzer
 Gain in spectral resolution compared with Spitzer (R~3000 vs 600)

JWST strengths

- Raw sensitivity
 - But over a small few arcmin field
- Spatial resolution: 0.2" at 5 μm
- Coronagraphy at near- and mid-IR
 - Exo-planets
 - Disks
- Medium resolution spectroscopy R~3000 unhindered by atmosphere
 - Solids + gas-phase lines

Existing 8m optical telescopes

Mauna Kea

Need deep wide-field imaging and (multi-object) spectroscopy to characterize the thousands of YSOs found by Spitzer and other instruments

ELTs: ~20-40 m

E-ELT

- Diffraction limited imaging and spectroscopy at optical, near- and mid-IR down to ~10 milli-arcsec =>
 - image Jupiters + ice giants around nearby stars
 - detect (super-)Earths with radial velocity
 - image gaps <20 AU in nearest clouds

~2017+

TMT

JWST-MIRI \Leftrightarrow ELT-METIS a.k.a. MIDIR

- continuous spectral coverage
- larger FOV with constant PSF
- better imaging sensitivity
- much better LSB sensitivity
- better spectro-photometric stability
- 100% sky coverage, good weather

- 5 8 times higher angular resolution
- high spectral resolution (kinematics!)
- comparable PS spectroscopic sensitivity

IR interferometry

Keck

 Imaging and low-medium resolution spectroscopy down to 1 mas, but only on bright sources (Kl~7 mag, N~1 Jy)
 => Geometry + structure innermost dust disk, launching winds from disk

Paranal residencia

Visit the Bond files at the www.eso.org, including VLT a la Bond movie

Premiered yesterday in London....

SOFIA

- 2.5m telescope in B747 airplane
- Good spectroscopic capabilities at $5-500 \ \mu m$

- First science flights mid-2009

Spectral resolution MIR-FIR

SOFIA unique for high-res spectroscopy 20-200 µm ([O I]!)

But limited sensitivity

Herschel Space Observatory

-HIFI: heterodyne spectrometer R=10⁶ 480- 1250; 1410-1910 GHz 500-200 μm, 158 μm

-PACS: photometry imaging spectrometer R=1500 60-200 μm

-SPIRE: photometry FTS spectrometer R<1000 200-670 μm

2009

launch

Photometry at long λ H₂O, [O I], [C II] Complete spectral scans

Approved Herschel KP on disks

- Guaranteed Time
 - WISH: deep HIFI searches for H₂O in dozen disks and many protostars
 - Olofsson et al.: imaging (debris) disks, including Fab Four
- Open Time
 - DIGIT: full, high S/N PACS scans of protostars + disks, plus photometry wTTs
 - HOPS: photometry and spectroscopy Class 0 Flat in Orion
 - GASPS: PACS [O I], [C II] gas lines in 274 disks plus H₂O follow-up
 - DEBRIS: photometry 450 nearby A-M stars
 - DUNES: photometry 283 stars within 25 pc

Several KPs have a strong link with Spitzer

FIR in perspective

- Note large jump sensitivity SPICA at > 30 μ m

Atacama Large Millimeter/Submillimeter Array

5.5

8 9

- 50 x 12m antennas
- 12 x 7m antennas

- 4 x 12m single dish

Image © 2007 DigitalGlobe Image © 2007 TerraMetrics © 2007 Europa Technologies

3.38 km

Streaming |||||||| 100%

Eye alt 18.99 km

Antennas at the OSF in Chile

Antenna transporters

- 10 telescopes in Chile
- First front-end
- Correlator being installed
- AIV + commissioning starting
- Early science observing within next few years

Strength of ALMA

- High angular resolution, with enough sensitivity to image continuum down to 0.01": ~1 AU at 150 pc, 30 AU at 3 kpc
 - Separate disk and envelope in embedded phase
 - Image entire disk structure (not just surface)
 - Image terrestrial planet forming zones
 - Detect protoplanets directly
- High spectral resolution *R*>10⁶
 - Down to 0.01 km/s => kinematics and dynamics
 - Multitude of lines => chemistry
- Long wavelengths
 - Dust optically thin => dust disk masses down to 0.01 M_{Earth} at 150 pc

IR surveys: statistics => timescales ALMA: physics + chemistry

Low frequency radio telescopes (up to 25 GHz)

ATA, first antennas

eVLA

- Optically thin dust inner disk
- Large grains (pebbles)
- Largest complex molecules

- SKA-high unlikely to materialize before 2025

IXO >2017

Hubble-COS: 2009

International X-ray Observatory, jointly between NASA, ESA and JAXA

Strengths

- Unbiased census of Class III sources
- Characterizing the radiation field incident on disks
 - Photoevaporation and disk dispersal
 - Ionization rate
- Atomic and molecular UV lines as diagnostics of gas, including debris disks
 - C+, O, ...
 - H₂

Astrometry ⇒ proper motions, distances!

GAIA: launch 2012, 20 μarcsec, all sky down to R~20 mag
 SIM: ~4 μarcsec, input catalog, down to 19 mag
 Combine with radial velocities => 3D view

Exploring the time domain

- How about time domain at other wavelength regions?

Fly-bys and sample return

Primitive material in solar-system disk

- Complex organics detected
- Some crystalline silicates => mixing in disk of our solar system extended to comet-forming zones

Importance of lab astrophysics

Sample Air Lock Analysis Chamber Detectors (Photo courtesy of Frank Stadermann, Washington University.)

Ultra-L₂MS

Cavity Ringdown Spectroscopy

UHV surface science

Importance of theory

- Radiative transfer
 - Line and continuum
- Magneto)hydrodynamics
- N-body simulations
- Thermal structure gas+dust
- Chemistry
- • • •

Klahr, Johansen, Henning, ...

Kratter & Matzner 2006

Questions to be answered by future instruments

From embedded to debris-disk phase

How do disks form and grow with time? Can we see episodic accretion in embedded phase? Initial masses of disks?

- ALMA - JWST What determines rate of evolution Class 0 - III? How does it vary within cluster? Origin of viscosity?

MIPS 24 image Perseus

9 sources within 0.1pc with very different SEDs => different evolutionary stages

Rebull et al. 2007

- Combination of all instruments

Characteristics disks around massive stars?

Nürnberger et al. 2007

- ALMA
- ELTs

What are the ages of young stars? How many are binaries? Testing stellar structure and evolution codes

Dupuy et al. 2008

ELTsJWST

Where are the protoplanets? When and how formed? Gravitational instabilities or core accretion?

ALMA simulation 850 GHz, 1 M_{Jup} around 0.5 M_{Sun} at 5 AU

Wolf & d'Angelo 2005

- ALMA
- IR with coronagraphs

Multiple paths for disk evolution primordial \rightarrow debris?

Brown et al. 2007

0 RA Offset (arcsec)

-1

How and where does grain growth and crystallization occur? What does it tell us about radial mixing?

- ALMA multi-wavelength mapping across entire disk
- Mid-IR interferometry of inner disk
- In-situ sample return missions

Origin complex organics in inner disk? Prebiotic molecules?

Pascucci et al. 2008

Carr & Najita 2008

- JWST-MIRI
- ELTs mid-IR in inner disks
- ALMA in outer disk (>10 AU)

Where is the snow-line in disks?

- SOFIA 6 μ m H₂O gas, 45 μ m ice
- Herschel far-IR H_2O gas, 60 μ m ice
- ELTs 3 μ m, 10-13 μ m H₂O gas

How and when is gas lost from disks?

Hollenbach et al. 2000

- Herschel and SOFIA [O I] and [C II]
- ALMA CO and [C I]
- JWST and ELTs H₂ and [Ne II]
- SPICA [O I]
- Future UV mission: H₂ emission?

How do young planetary systems evolve? What planetary architectures are inferred from debris disk structures? Diversity? Relation with observed mature systems?

- ALMA (but not at best resolution)
- JWST with coronagraphy
- ELTs with coronagraphy, polarimetry
- New mission?

Kuchner & Holman 2003

Multiple paths to planets? Origin free floating planets?

Lafrenière et al. 2008

- Deep wide field imaging
- JWST
- ELTs

Conclusion

- Many exciting opportunities in next decade(s)
- Enjoy them!
- Do good science to train next generation, and to motivate and advocate future instruments

Thanks!

- Thanks to Spitzer for providing fantastic data
- Thanks to Debbie, Karl and their team for organizing a wonderful conference