Transitional Disks Theories and Observations

E. Chiang UC Berkeley

Holes are not empty

- Mild near-IR excesses in some sources $\tau_{10\mu {
 m m}} \sim 0.002 0.05$
- Some accrete $\dot{M} \sim 0.1 \times \text{median T Tauri}$

• Inner molecular gas disks $\Sigma({
m H}_2) > 0.1\,{
m g\,cm^{-2}}\,{
m at} \sim 0.2{
m AU}$

"Pre-transitional" Gapped Disks

Theories

- Grain growth
- Planet clearing
- Inside MRI / outside radiation pressure
- Viscous accretion / photoevaporation

Theory I: Grain growth

Varit	\sim	$1 \mathrm{m}/$	\mathbf{S}	for	\boldsymbol{s}	\sim	1 11	n
Crit		/		IOI	\mathbf{O}			

 $\frac{\text{Repulsion (elastic modulus E)}}{\text{Stress } \sigma \sim E \nabla \xi \sim E \frac{\delta}{a}}$ $\sigma \sim \frac{mv}{(\delta/v) \times a^2}$

Repulsive force $F_R \sim \sigma a^2 \sim \mu^{3/5} E^{2/5} s^2 v^{6/5}$

 $\begin{array}{l} \mbox{Adhesion (surface tension γ)} \\ \mbox{Binding energy } U \sim \gamma a^2 \\ \mbox{Binding force } F_B \sim \frac{U}{\delta} \sim \gamma s \\ \mbox{} F_R = F_B \longrightarrow v_{\rm crit} \sim 4 \frac{\gamma^{5/6}}{E^{1/3} \mu^{1/2} s^{5/6}} \end{array}$

Hertz 1882, Chokshi et al. 93

Theory I: Grain growth $mg \sim F_{drag}(v)$ $\mu s^3 \Omega^2 h \sim \rho_g s^2 c_s v$

$$\rightarrow$$
 Terminal $v \sim \frac{\mu}{\rho_g} \Omega s$ (bigger is faster)

Accretion
$$\frac{d}{dt}(\mu s^3) \sim \rho_d v s^2 \longrightarrow \dot{s} \sim \frac{\rho_d}{\mu} v$$
 (faster is bigger)

 \rightarrow Exponential growth $s \sim s_0 \exp(\rho_d \Omega t / \rho_g)$ (fastest growth in inner disk)

Since
$$t \sim h/v \longrightarrow s \sim s_0 \exp(\Sigma_d/\mu s)$$

 $s_0 \sim 1 \,\mu m$
 $\mu \sim 1 \,\mathrm{g \, cm^{-3}}$
 $\Sigma_d \sim 10 \,\mathrm{g \, cm^{-2}}$
 $s \sim 1 \,\mathrm{cm}$
 $t \sim 100 \,\mathrm{yr}$
 $v \sim 1 \,\mathrm{m/s}$

1969

Theory I: Grain growth: Right sign, wrong magnitude

Sticks too well

Problem persists even ifgrains are fractalmonomers are nonspherical

Proposed solution: Replenishment of micron-sized grains (near-IR opacity) by fragmentation

Theory I: Grain growth: Heating largely ignored ...

Theory I: Grain growth: Beyond cm sizes

Gravitational instability of dust sub-layer But Kelvin-Helmholtz shearing instability interferes

3D shearing box simulations of dust+gas mixture

 $h_d \approx 0.018 \, h$

bulk solar metallicity $\langle \rho_d / \rho_g \rangle = 0.01$ $\max \rho_d / \rho_g \approx 1.3$ $\max(\rho_d + \rho_g) \sim 10\%$ Roche density if minimum mass nebula

Chiang 2008

Theory I: Grain growth Gravitational instability of dust sub-layer $\max(\rho_d + \rho_g) \sim \text{Roche density}$ requires some combination of:

A. Disk masses > minimum-mass nebula $\rho_g \uparrow \rho_d \uparrow \operatorname{at\,fixed} \rho_d / \rho_g$

B. Super-solar bulk metallicities $\langle \rho_d / \rho_g \rangle \uparrow \text{ at fixed } \rho_g$ Enough to increase by factors of ~5

 $\langle \rho_d / \rho_g \rangle = 0.03$

$$\max \rho_d / \rho_g \approx 6$$

Chiang 2008

Theory II: Planet Clearing

Initial $\Sigma_{inner} / \Sigma_{outer} = 0.01$

Run duration = 100 orbits «Viscous time t_{diff} ~ 10000 orbits

> $t_{\rm diff} \sim a_{\rm rim}^2 / \underbrace{\nu}_{\mu}$ $\nu = (\alpha) c_s h$ 0.004 (assumed)

... Hole in simulation reflects assumed initial conditions

Theory II: Planet Clearing

 $\dot{M}_{
m inner} pprox 0.1 \dot{M}_{
m outer}$ neglecting migration

- Reduces stellar accretion rate by 10 x
- Does not explain observed 1000 x reduction in dust
- Discrepancy should worsen if migration is included

StarCircumbinaryTheory II: Planet Clearing: Transitional Disk

Binary separation $a_{binary} \approx 8 \text{ AU}$ $\approx \text{Hole radius}$ $a_{rim} \approx 10 \text{ AU}$

 $au_{10\mu m} < 0.002$

 $\dot{M}_* < 10^{-10} M_{\odot} / \mathrm{yr}$

No CO gas out to 2 AU

D'Alessio et al. 05 Najita et al. 07 Blake, Salyk, personal comm.

CoKu Tau/4

∽

Summary so far

1. Grains grow.

But growth alone cannot explain transitional disks.

- Does not address $\dot{M}_* \sim 0.1$ conventional T Tauri rate
- Hard to reconcile with gapped / "pre-transitional" disks
- 2. Non-accreting transitional disks are circumbinary disks.
- 3. Single Jupiter-mass or smaller planets have too narrow gaps to explain either transitional or gapped disks.
 - Does not reconcile 1000 × smaller $\tau_{10\mu m}$ with 10 × smaller \dot{M}_*

Theory III: Inside MRI / Outside Radiation Pressure

Theory III: Inside MRI / Outside Radiation Pressure

- Linear instability afflicting weakly magnetized, outwardly shearing flows
- Instability drives turbulence that transports angular momentum outward and mass inward

<u>Requirements</u>

1. Magnetic flux freezing (Fleming, Stone, & Hawley 00)

$${
m Re}_{
m M} \equiv rac{c_s h}{\eta} \propto rac{n_e}{n} \ > {
m Re}_{
m M}^* pprox 10^2 - 10^4$$

2. Good neutral-ion coupling

(Blaes & Balbus 94 Hawley & Stone 98)

$$\operatorname{Am} \equiv \frac{n_i \langle \sigma v \rangle_{in}}{\Omega} > \operatorname{Am}^* \approx 100$$

Glassgold, Najita, & Igea 04

Chiang & Murray-Clay 07

Theory III: Inside MRI / Outside Radiation Pressure: Testing Predictions

$$\dot{M} \sim \frac{12\pi\alpha N^* a_{\rm rim}^2 (kT^*)^{3/2}}{GM_* \mu^{1/2}}$$

Further predicts $\Sigma_{\rm gas} \sim 1 - 10 \, {\rm g \, cm^{-2}}$ @ 1 AU

- 100-1000 x lower density than MMSN
- Satisfies CO lower limits

But cannot explain origin of hole

But deeper correlations may exist ...

Why?

And does similar relation hold for debris disks?

Same $\dot{M}_* \propto M_*^2$ holds for non-transitional disks Theory III: Inside MRI / Outside Radiation Pressure Goal: Keep just enough dust in

At $a_{\rm rim}$, $t_{\rm blow} \sim t_{\rm diff} \Longrightarrow \sim 1/2$ rim dust leaks to $a_{\rm rim}/2$

- Does leaked dust keep leaking in? $\frac{t_{\rm blow}}{t_{\rm diff}} \propto \Sigma_{\rm gas} Ta \uparrow \downarrow \text{ with } a?$
- Leaked dust might concentrate at $a \ll a_{\rm rim}$, restoring $\tau_{10\mu \rm m} > 1$: gapped disk possible
- Situation unclear without further modeling

Summary

- 1. Grains grow.
 - But growth alone cannot explain transitional disks.
 - Does not address $\dot{M}_* \sim 0.1$ conventional T Tauri rate
 - Hard to reconcile with gapped / "pre-transitional" disks
- 2. Non-accreting transitional disks are circumbinary disks.
- 3. Single Jupiter-mass or smaller planets have too narrow gaps to explain either transitional or gapped disks.
 - Does not reconcile 1000 × smaller $\tau_{10\mu m}$ with 10 × smaller \dot{M}_*
- 4. Inside-out MRI can account for \dot{M}_* , given $\alpha \sim 0.01$
 - Predicts $\Sigma_{\rm gas} \sim 1 10 \, {\rm g \, cm^{-2}} @ 1 \, {\rm AU}$
 - Predicts $\dot{M}_* \propto a_{\rm rim}^2/M_*$ (if all other factors equal)
 - Cannot explain origin of AU-sized hole

Future directions

Key puzzle: 1000 × smaller $\tau_{10\mu m}$ with 10 × smaller \dot{M}_*

1. Theories are not mutually exclusive.

Planets	+	Grain growth	+	MRI	+ Radiation
		0.0101			pressure
$\operatorname{smaller}\dot{M_*}$		smaller $ au_{10\mu m}$		origin	smaller $\tau_{10\mu m}$
Multiple planets may be required to explain factor of 10 and prolong Type		Implied by planets!	01	f viscosity	Imperfect clearing can lead to gapped disks (e.g. LkCa 15)

2. What is the origin of viscosity prior to transitional phase? Gravitational torques? See papers by Vorobyov and Basu