Galactic Observations of Terahertz C⁺ (GOT C⁺): CII Detection of “Hidden” H₂ in the ISM

Bill Langer
GOT C+ Team: P. Goldsmith, D. Li, J. Pineda, T. Velusamy, & H. Yorke
Jet Propulsion Laboratory, California Institute of Technology
November 2, 2010

Copyright 2010 California Institute of Technology. Government sponsorship acknowledged.
Atomic to Molecular Gas Clouds

HI, CII, CI, and CO, track the evolution of clouds from the diffuse to dense state

- Diffuse Atomic Clouds
 - Warm, low density HI & CII

- Transition Clouds – a phase with H_2 and CII, but little or no CI & CO.

- Dense Molecular Clouds - H_2 is traced by CO

We are missing a critical stage of cloud evolution without CII
Evolution of HI and CII

Time dependent evolution of carbon (Lee et al. 1996)

Bill Langer/JPL 11/2/10
PDR Model

“hidden gas”
~ 30% of H₂

FUV irradiation

Wolfire et al. 2010

got C+?
From COBE & BICE to Herschel HIFI

- CII - strongest Galactic far-IR line
- COBE 7° beam & ΔV ~ 10^3 km/s
- BICE 15’ beam & ΔV ~ 175 km/s
- COBE - widespread distribution of CII in the Galactic plane
- BICE - inner Galaxy distribution.

HIFI got C+?

350° < l < 30° & |b| < 3°

BICE and IRAS

Herschel HIFI has the spectral (<0.5 km/s) and spatial resolution (12”) to study individual clouds.
GOT C+ Samples CII throughout the Galactic Plane

Galactic Plane Survey - systematic volume weighted sample of 500 l.o.s. in the disk
– l (0° – 360°) at b = 0°, +/- 0.5° & 1°

Galactic Central Region: CII strip maps at 360 positions in on the fly (OTF) mapping mode.

Over 360 los observed to date.
GOT C+ First Results

One of 16 LOS taken in the PSP & PVP phase located along $l = 345^\circ$

![Graph showing HIFI G345.6522+0.0 with various lines representing different molecular transitions and a 5los marker on an image of the galaxy.](image.png)
GOT C+ First Results

One of 16 LOS taken in the PSP & PVP phase located along $l=24^\circ$
GOT C+ First Results: Statistics

• Detected 146 CII features in first 16 LOS
 • 35 no 12CO – Diffuse atomic & molecular clouds (Langer et al. 2010)
 • 53 with 12CO, but no 13CO – Transition clouds (Velusamy et al. 2010)
 • 58 with 12CO & 13CO – Dense Molecular Clouds (Pineda et al. 2010)
 – 12 of these with C18O – Dense Cores

Complete GOT C+ survey will intersect thousands of clouds and allow a statistical study of ISM conditions in various Galactic environments.
H₂ in Diffuse Clouds

\[I(\text{CII}) = I(\text{CII}, \text{HI}) + I(\text{CII}, \text{H}_2) \ (\text{K km/s}) \]

\[I(\text{CII}) = f(n_{\text{HI}}, T_K) N(\text{C}^+)_{\text{HI}} + f(n_{\text{H}_2}, T_K) N(\text{C}^+)_{\text{H}_2} \]
f = CII excitation

Use HI to estimate \(I(\text{CII}, \text{HI}) \)

Calculate \(N(\text{H}_2) \) as \(f(n, T) \)

Details in Langer et al. 2010

- Many clouds have excess C⁺ not readily explained as coming from an HI layer
- Need very warm, dense gas to explain \(I(\text{CII}) \) as coming just from HI cloud or layer
- CII traces warm (\(T_{\text{kin}} > 30\text{K} \)) “hidden” \(\text{H}_2 \).
- Diffuse clouds or edges of dense clouds?
Transitional Molecular Clouds: CII + 12CO

- Analysis of CII versus HI and 12CO reveals excess C$^+$ that traces a warm “hidden” H$_2$ cloud layer.
- Comparing mass traced by CII and CO, on average, ~25% of the mass is in the C$^+$ layer in agreement with models (e.g. Wolfire et al. 2010).
- Velusamy et al. (2010) for details.

(a) The line is a fit for I(CII) vs. I(HI) in “nominal” HI clouds. I(CII) above this line arises from C$^+$ in the H$_2$ layer surrounding a 12CO core.
(b) Excess I(CII) plotted against I(12CO). The line is a fit to I(CII) from “nominal” clouds containing about 15% of the total H$_2$ in the H$_2$/C$^+$ layer. Clouds with larger H$_2$ envelopes lie above this line.
Constraining n, T, and G_{FUV}

- Constrain $[n, T, G_{FUV}]$ (G_{FUV} the intensity of the FUV field), with cloud models including: chemistry, thermal properties, radiative transfer of UV in and sub-mm and far-IR out
- 12CO provides an important constraint: C$^+$ has converted to CO and we can calculate extinction to the C$^+\text{-}C^0\text{-CO}$ transition

Detection thresholds for 12CO, 13CO, C18O based on chemical-cloud models (Visser et al. 2009).

- Additional observations of CI and CO(J>3) in transition zone, can provides tight constraints (n,T,G_{FUV})
- Otherwise, use thermal models to estimate (n,T) in the HI and H$_2$ layers and get indirect, but looser, constraints.
Cloud Models

• Several time dependent codes available & under development
 – Smooth density models – e.g. Meudon code, Visser and Glover models, PDR models of Tielens, Hollenbach, Kaufman, & Wolfire
 – Clumpy models – e.g. KOSMA-TAU code (Cologne group and Sternberg)
• In all cases one needs to develop a grid of models as a function of parameters to search for the best solution for each cloud.
• We have used a simple model to estimate the cloud conditions

- Simple chemical model for C\(^+\) to CO
- Heating: UV + grain & PAHs; C.R. ionization
- Cooling: C\(_{\text{II}}\) emission
- Iterate on \(G_0(\text{FUV})\) until match \(I(\text{C}\(_{\text{II}}\))\) and \(I(\text{CO})\)
Transition Cloud Solutions (Illustrative)

- Set of solutions using simple thermal and chemical models
- More exact modeling with cloud-chemical models is underway using the Meudon and KOSMA-TAU codes.
PDRs in Dense Molecular Clouds

- Adding CI & CO(J≥3) better constrains n, T, G_{FUV}, in PDRs
- 4 LOS observed in CI (609 µm) and CO(4-3) at NANTEN2
- 21 CII components have associated CI and CO emission

- Combined CII, CI, and CO (1-0) to determine PDR conditions using a grid of KOSMA-TAU PDR models—see Poster by Pineda et al.
 - Most of the sources have high density, $\sim 10^4$ cm$^{-3}$, and $G_{FUV} < 100$ G_D.
 - Comparisons with Meudon code are underway.
Summary

• Detected 146 CII features in 16 LOS (335° - 25°), out of 900 planned LOS; 350 LOS observed to date
 – 35 HI and no 12CO – Diffuse atomic & molecular clouds
 – 53 HI, 12CO, but no 13CO – Transition clouds
 – 58 12CO and 13CO PDRs, a few of which have C18O on the line of sight

• Results
 – Significant amount of warm H$_2$ in diffuse and transition clouds
 – Fraction of H$_2$ in dense clouds observable only in CII – warm “hidden” H$_2$ ~ 25%
 – 44% of I(CII) comes from warm, dense PDRs, rest diffuse and transition clouds
 – PDRs observed in CII, CI, CO show high n (>104 cm$^{-3}$) and G$_{FUV}$ <100G$_D$
 – Three papers published in the A&A HIFI Special Issue

• These early results show great promise for using CII 158 µm line to study the H$_2$ gas in the UV radiated portion of clouds.

• A larger cloud sample on completion of the GOT C+ Disk survey will:
 – Trace the evolutionary status of transition clouds and their role in the ISM
 – Characterize PDRs in star forming environments.
 – Provide an estimation of the fraction of [CII] emission tracing star formation