IT IS MY GREAT HONOR

To be standing in for

TIM HECKMAN

Why is he the perfect rapporteur (and so well-liked?)

He’s genuinely interested in everything that’s going on (and how they may be connected)

But he’s not easily conned
The Most Exciting Extragalactic Science in the Next Decade Requires…

a Large FIR Space Telescope

Hercules Deep Field, Colbert et al.
Planning Space Missions reminds me of…

• Planning was essential before D-Day (and then worthless once it started)—Genl. Eisenhower

• Q: Why is the White House like Heaven?

• A: Lots of people are always talking about it, who aren’t necessarily going to end up there.
Reach **Highest Redshifts** in the Far-Infrared/Sub-mm, because of negative K corrections.

On a Clear Day, You Can See... Almost Forever, since that is where galaxy energy outputs peak.

Malkan and Stecker 2001 model predictions.
Needed: Deep IR Field Surveys + Redshift Estimates

- As mentioned by Martin W and Mark D, Herschel will have tremendous cosmological “reach”: very high surface densities of $z>2$ galaxies will show directly how the their LF evolves, even when very dusty.
- Frayer poster has beautiful 70um maps with best ever number counts: “Confusion” (8 beams/source) is 2.5mJy, in 3hrs integration.

Malkan & Stecker 2001 predictions

But seriously confused.
Strong CIB detected, mostly COBE

FIR Peak comparable to O/NIR peak
→ globally, dust must have absorbed almost half of all stellar photons:

We can’t understand energy production in the Universe if we don’t observe half of it

MODELS, from Malkan & Stecker, with $L(\text{IR}) \sim (1+z)^{3-4}$, most emission from $z \approx 1$ versus (green) observations
You do NOT know the bolometric luminosity of any galaxy until you get photometry out to 200um, past its peak

- Mark D: 24um observations don’t nail down LIR
- Rigby poster: “ULIRGs” at z=1+ may be quite different from local ULIRGs, not necessarily compact/buried star formation driven by mergers
- Seyfert 1’s have much hotter dust (nuclei dominate at 12--20um),
- but Seyfert 2’s can resemble (moderately warm) starbursts or normal disk galaxies
- AGN gives NO CONTINUUM SIGNATURE longward of 60um

(Spinoglio, Malkan, Andreani 2002)
FIR offer limited morphological info
fuzzy “Baby Pictures” of Galaxies:

They are cute, make great NASA publicity,
but have limited astrophysical information.

Simulated JWST Press Release

Go ahead: fit me with a Sersic law, then see how much you’ve learned!
Astronomical Discoveries are 10% Survey; 90% Follow-up

- IMAGING is great for SURVEYS, but
- WE CANNOT DO WITHOUT SPECTROSCOPY (colors and morphologies are not enough!)

- Most science comes from multiple line RATIOS, so wide spectral range (up to a factor of 2) gives invaluable synergy
- SPICA spectroscopy gains 3 orders of magnitude over Herschel/PACS
Spectroscopy of *newborn* galaxies

- ISO-LWS and Spitzer/IRS confirmed our predictions (SM ’92) of powerful diagnostic emission lines from 10µm to 158µm (almost 1% of bolometric luminosity)
- at Z=3--15, these are redshifted to 100—400um
- Martin W (Fig.1 in SM92) : Beautiful full range of I.P./n\(_{\text{crit}}\) diagnostic EFS lines, at all redshifts
Models: quiescent galaxies are PDR-dominated, starbursts produce more O++, while Seyfert has O I from denser gas [MM et al]
More data: [Armus, Helou, Brauher poster] [O I]63um becomes dominant in (hotter) ULIRGs
Better models: [Fischer poster, Tommassin et al 2008 ApJ 676, 836] FIR EFS lines sort out ionization level (AGN vs starburst): higher ionization parameter can explain “[CII] deficit” [ALMA shouldn’t bet everything on that line…]
Don’t forget FIR molecules!

OH Lines in *Emission* only in the archetypical Seyfert 2 galaxy, NGC 1068!

<table>
<thead>
<tr>
<th>Line id.λ</th>
<th>Flux ($10^{-19} W, cm^{-2}$)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td></td>
</tr>
<tr>
<td>34μm</td>
<td>< .5</td>
<td></td>
</tr>
<tr>
<td>48μm</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>53μm</td>
<td>< 1.2</td>
<td></td>
</tr>
<tr>
<td>65μm</td>
<td>< 1.2</td>
<td></td>
</tr>
<tr>
<td>79μm</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>84μm</td>
<td>< 1.2</td>
<td></td>
</tr>
<tr>
<td>96μm</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>98μm</td>
<td>< 1.2</td>
<td></td>
</tr>
<tr>
<td>115μm</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>119μm</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>163μm</td>
<td>0.74</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modeled</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>34μm</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>48μm</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>53μm</td>
<td>-0.4</td>
<td>(absorption)</td>
</tr>
<tr>
<td>65μm</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>79μm</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>84μm</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>96μm</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>98μm</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>115μm</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>119μm</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>163μm</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

Spinoglio, Malkan, Smith 2003
Ultraluminous Infrared Galaxies May be Optically thick even in the mid-IR

- Some show FIR absorption lines, hardly any emission lines,
- But fortunately these show strong OH absorption
- (Fischer et al 2000, ISO LWS spectra)
Sign me up for the H2 Bandwagon!

• Appleton and Boulanger made me a believer; Ogle poster is awesome
• Great FIR probes for shocks in the turbulent universe!
• How widespread is this during the epoch of galaxy formation?
Many key parameters are not as well determined as you might think

- See Samir poster!
- Don’t count on having photometric redshifts for everything (many filters needed at long wavelengths, and don’t forget the DOGs, hot dust in AGN/starbursts kills the 1.6μm bump)
- Currently tremendous uncertainty in numbers of UV-selected galaxies at z=6+
- 4—5x “correction” for dust extinction (from UV slope) Extinction corrections (and reddening “laws”) are very rough guestimates, expect lots of cosmic variance

- Star formation rates from UV continuum, emission lines, dust continuum
- Can we reconcile SFR(z) with Stellar Mass(z)?
How much energy in the Universe came from fusion versus accretion?

- Locally difficult to answer because of:
 - Extinction (absorbs shorter wavelengths)
 - Reprocessing (original continuum re-emitted by dust and gas)
- All difficulties become much worse as $z>1$ (where most of the action is)
Gas Phase Abundances at High Z

- Cannot use strong Far-UV ISM absorption lines: since they are totally saturated, their strength depends mostly on velocity range.
- Curve-of-growth analysis of Equivalent Widths in Damped Lyα Absorbers (in front of background quasars) {these are not "galaxies"}.
What ionizes the Universe, at all redshifts?

- AGN completely dominate the ionization of the IGM, now and at all epochs (STIS FUV MAMA deep imaging of 11 z=1.5 starburst galaxies:

Studying the First Black Holes
How to find/ determine energy output of “Obscured” AGN?

• Can’t rely on Hard X-rays for very Compton-thick (10^{25} \text{ cm}^{-2}) nuclei (buried Sy1’s, most Sy2’s not generally detectable, except maybe via Fe Ka 6keV line, or scattering)

• Even when detected, HX cannot (in general) predict the rest of the spectrum to better than a factor of 10 (because in some quasars, X-rays are <few\% of bolometric luminosity)

• So we’re going to the DOGs [Desai Poster]
Best developed Accretion indicators are “narrow” forbidden lines

- Since they arise 100’s of parsecs from the nucleus, but are photoionized by its high-energy spectrum, they are good tracers in obscured Seyfert 1’s and Sey 2’s
- Mid to Far-IR EFS lines are producing equivalent extinction-independent “BPT” classification diagrams
- Petric ULIRG spectra poster shows how we are heading to an IR BPT diagram, with FeII 26um as a shock diagnostic
- Warning: not all AGN have much of an NLR (extreme Eigenvector 1
Will we ever detect a “torus”?

Malkan and Spinoglio 1989; 1992 found similar Luminosity Functions for Sy 1 and Sy 2 in our 12um Sample.

If the difference is simply obscuration, we still do not know where it occurs!

Malkan et al 1998 WFPC2 imaging survey
What Spectral Resolution will we need?

- $R_{\text{effective}}$ of 50 (NICMOS Grism) was usable for surveying strong lines (mainly $H\alpha$)
- $R \sim$ few hundred (WFC3) is a minimum for measuring lines redshifts and ratios
- $R \sim 1000$ is good for galaxy-wide properties, clusters and interactings
- $R \sim 2000-4000$ for dynamics inside galaxies
Don’t forget the broad continuum features!

- PAHs are powerful, also Silicate (emission or absorption, see Gorjian poster!) and ICE absorption [see Petric poster!], all shifted to FIR at reionization z’s
NICMOS Grism Parallel Survey

- Showed R~50 was “good enough” to find ~100 line emitting galaxies, mostly Ha in the “redshift desert”

Need to resolve confusion limit
Emission lines solve this problem

Malkan, Henry, et al
Need $R > 1500$ for resolving lines

- See Dasyra poster, using $[$NeV$]$ and $[$OIV$]$ line widths to guestimate M_{bh}, since they probe the galactic bulge potential
- We’ll know how this works in next 5 years...
What Can we Expect in 2010—2020?

• Acronyms will have gotten COOCy
 (Completely Out Of Control)
• We’ll need to add more shocks and turbulence in our grad courses (even though they’ll complain)
• We’ll search for the first frosted mini-haloes
• ~One Third of the most exciting work will still be getting done by GR