

Local Cluster Substructure Survey

Far-infrared survey of BCGs with Herschel

Tim Rawle

Steward Observatory, University of Arizona

Eiichi Egami, Marie Rex, Andrew Fiedler, Chris Haines, Jeff Portouw (Steward) Alastair Edge (Durham), Graham Smith (Birmingham) HLS + LoCuSS collaborations

Through the Infrared Looking Glass, Pasadena

Cool cores and star forming BCGs

- Hot T~10⁷-10⁸ K X-ray emitting gas constitutes the bulk of baryonic matter in rich galaxy clusters
- In central regions, ICM densities and pressures can be sufficiently high that cooling to stellar temperatures occurs on timescales shorter than the cluster lifetime (Cowie & Binney '77, Edge+92)
- X-ray observations fail to find temperatures as low as expected from the inferred mass accretion rates heating required
 - Solved by AGN feedback rising bubbles in nearby central galaxies
- The brightest cluster galaxies (BCGs) often lie at the minimum of the cluster potential well
- In contrast to the majority of massive cluster galaxies, some BCGs contain significant cool gas and exhibit signs of star formation
- Cluster cooling could be responsible for star formation in BCGs
- The origin of fuel for star formation is hotly debated with the impact of cooling flows disputed as well as plausible alternate sources presented,
 - e.g. stellar mass loss (Voit & Donahue '11)

Through the Infrared Looking Glass, Pasadena

Tim Rawle

Cool cores and star forming BCGs

- BCGs signatures of cool gas and star formation include
 - Optical emission line ratios typical of HII regions (e.g. Crawford+99, Conselice+01)
 - Molecular hydrogen at cool temperatures (via H₂, CO, Hα emission)

(e.g. Edge+02, Egami+06, Johnstone+07, Cavagnolo+08, Edge+10)

• Far-infrared dust continuum (obscured star formation), extrapolated from the mid-infrared

(e.g. Egami+06, Quillen+08, O'Dea+08)

- Molecular line strength (e.g. McDonald+10) and infrared luminosity (e.g. O'Dea+08) correlate with X-ray cooling time (or mass deposition rate)
- Until now, far-infrared luminosity has only been measured directly for a small number of BCGs
- Using sensitive Herschel photometry we want to...
 - fully constrain the far-infrared component of BCGs
- quantify star formation for a large sample
 Through the Infrared Looking Glass, Pasadena
 Tim Rawle

Star formation rate (M_oyr⁻¹) O'Dea+08

McDonald+10

The Herschel BCG sample

- 46 BCGs in HLS (0.15 < z < 1.0)
- 21 BCGs in LoCuSS (11 also have deeper HLS data) ($z \sim 0.2$)
- 3 BCGs from Edge+10 (z < 0.3)
- 70 BCGs TOTAL

hrough the Infrared Looking Glass, Pasadena

FIR detected BCGs (SEDs)

Z2089 - powerful AGN host

- The majority of BCGs do not exhibit the properties of a powerful AGN (e.g. optical lines, X-ray emission, strong MIR continuum)
- AGN feedback is thought to be responsible for reduced cooling in cluster cores
- Short AGN phase in duty cycle but the scarcity makes further analysis difficult
- PACS 70µm photometry and line spectroscopy to investigate energetics and determine AGN effect on gas within the BCG itself (Z2089 + 3 others; OT2 PI: Edge)

Through the Infrared Looking Glass, Pasadena

Tim Rawle

L_{TIR} for the full sample

- 22% (15/70) of the BCGs are detected by Herschel (SFR \ge 2 $M_{\odot}yr^{-1}$)
- Biased by redshift dependent detection limits and inclusion of Edge+10
- LoCuSS is a volume limited sample selected on X-ray luminosity (Smith+10)

8/32 BCGs detected (25%) Through the Infrared Looking Glass, Pasadena

Star formation fueled by cooling ICM?

Through the Infrared Looking Glass, Pasadena

L_{TIR} compared to $L(H\alpha)$ - qualitative

Total: 70 BCGs (46 HLS + 21 LoCuSS + 3 from Edge)

Herschel detected: 15 BCGs

 $H\alpha$ detected: 18 BCGs

A851 has a large projected offset from X-ray peak (~280 kpc; Bildfell+08)

HST imaging shows large tidal tail galaxy-galaxy interaction rather than cool-core BCG? 51 non detections

Δ

3 have 24µm detections which place L_{TIR} just below the LoCuSS Herschel limit

The remaining source (Z2701) has a very low $L(H\alpha)$

Through the Infrared Looking Glass, Pasadena

14

L_{TIR} compared to L(H α) - quantitative

- L(Hα) uncorrected for reddening
- Low L(Hα) for Z2701 is consistent with Herschel non-detection
- A1068, A1835, Z2089, Z3146 all show signs of sub-dominant AGN (optical, IRS spectra)
- A851 does not lie in the cluster potential well
- Generally, SFR(Hα) and SFR_{FIR} agree with only modest reddening (<0.3mag)
- The most IR-luminous BCGs have the most obscured star-formation (~1 mag reddening) and/or dominant AGN

Through the Infrared Looking Glass, Pasadena

Tim Rawle

Stacking analysis

Mean SFR limit for a non-cool-core cluster BCG at...

- z=0.2: SFR < 0.17 $M_{\odot}yr^{-1}$
- z=0.3: SFR < 0.42 M_oyr⁻¹

hrough the Infrared Looking Glass, Pasadena

Stellar-to-dust mass ratio

$$M_{dust} = \frac{4\pi D^2 f_{500}}{\kappa_{abs} 4\pi B_{\lambda}(T_{dust})}$$

$$\kappa_{abs} = 0.95 \text{ cm}^2 \text{g}^{-1}$$

$$(Draine+05)$$

$$M(M/L_K) = (-0.27 \pm 0.03)z - (0.05 \pm 0.03)$$

$$(Arnouts+07)$$
Black arrows show binned
stacked) limit for non-
derschel detected BCGs at
sed stellar mass
If stellar mass loss, rather
han cooling cluster gas, fuels
tar formation, M_*/M_{dust} would
eary with M_* (unless
riggered, but not fueled, by

Summary

- Herschel 5-band photometry of 70 BCGs to constrain the far-infrared dust component and hence star formation
- 15/70 (22%) are detected by Herschel (SFR > 2 $M_{\odot}yr^{-1}$)
- L_{TIR} for FIR-bright BCGs are well correlated with cluster X-ray cooling time - circumstantial evidence that cool gas in the cluster fuels star formation in the BCG
- Stacking Herschel images for BCGs undetected in FIR reveals that the mean non-cool-core cluster BCG at z=0.2 has SFR < $0.17 M_{\odot}yr^{-1}$
- FIR and Hα correspond well, with only moderate reddening required to correct Hα for obscuration (generally <0.3 mag)
- The most IR-luminous BCGs ($L_{TIR} > 2x10^{11} L_{\odot}$) have the most obscured starformation (~1 mag reddening required for H α) and/or dominant AGN