Accretion and Jet Power Spitzer and WISE Radio Galaxy Surveys

Patrick Ogle (IPAC, Caltech) Ski Antonucci (UC Santa Barbara)

Image Credit: Cyg A, Hook, Tran, Fosbury

Accretion and Radio Galaxy/ Quasar Unification

- Radio galaxies accrete in two modes:
 - Thermal = strong UV emission from accretion disk
 - High ionization lines (HIG)
 - Broad emission lines (BLRG, QSR)
 - Nonthermal = weak UV emission, weak accretion
 - Low ionization lines (LIG)
- HIG/Quasar Unification–Antonucci 84, Barthel 89
 - Quasars and HIGs at z>0.4 unified by orientation
 - Both are powered by optically-thick accretion onto BH

Radio Power, Morphology, Environment

FR I 3C 31, cluster

FR II Cyg A, cluster

CSS 3C 303.1, host galaxy

Increasing 178 MHz Power

Image credits: NRAO; DeVries 97

The Dust Torus as IR Calorimeter

Some FRII RGs have bright thermal MIR emission, but others do not...

Keck LWS 11.7 μ m images from Whysong 05 Thesis, Antonucci 11 arxiV:1101.837

Dusty Torus Models

•Thermal dust emission at 12-24 μ m is more-or less isotropic (factor 2-10).

→ Orientation-insensitive measure of quasar accretion luminosity

•Clumpy torus models give large range of dust temperatures, in a compact configuration.

•Dust emission concentrated near the sublimation radius

Honig 06–Clumpy Torus Monte Carlo Simulations

Spitzer IRS Spectra

MIR-weak LIGs: PAHs, Jet-shocked H_2 . (Ogle 10)

Spitzer IR vs. Radio Luminosity (z<1 3C)

Spitzer IRS z<1 3C: Ogle 06; Leipski 09; +archival data

Compact, Young Radio Sources

Small (10^{-3} -10 kpc), Young (10^{3} - 10^{6} yr) radio sources:

GPS = Gigahertz-Peaked Spectrum CSS = Compact Steep Spectrum (3C) CSO = Compact Symmetric Object

Spitzer, z=0.4-1 GPS, CSS, and FR IIs: Ogle 11; z<0.3 CSOs: Willett 10

Eddington Luminosity Ratio

• Lbol from L(15 μ m)

- Torus covering fraction $\langle f_c \rangle = 0.55$ (Ogle 06)
- Mid-IR anisotropy factor $\langle f_a \rangle = 1.9$ at 15 µm
- Bolometric correction $L_{IR} = 1.7 v L_v (15 \mu m)$
- \circ M_{BH} from K-band luminosity of host galaxy:

 $\log M_{BH} = 8.21 + 1.13 (\log L_{K,\odot} - 10.9)$ (Marconi 03)

[Must exclude quasars, where host is overwhelmed by AGN.]

$$\begin{array}{c} & L_{bol}/L_{edd} = L_{IR} \; (\langle f_a \rangle / \langle f_c \rangle) / (4\pi G cm_p M_{BH} / \sigma_T) = (M/M_{edd}) \; (\eta / \eta_{edd}) \\ & L_{edd} \; \widetilde{} \; \; (10^{46} \; erg \; s^{-1}) \; M_{BH,8} \\ \end{array} \qquad \begin{array}{c} & & & \\ & M_{edd} \; \widetilde{} \; \; 1 \; M_{\odot} \; yr^{-1} \; , \; \eta_{edd} = 0. \end{array}$$

• Radiative Efficiency $\eta = L_{bol}/Mc^2$ drops by a large factor at $M/M_{edd} \le 10^{-2}$. Accretion flow becomes optically thin and hot (SS disk, $\alpha = 1$).

L/Ledd vs. Radio Power (z<1 3C)

Ogle 12

WISE (22 μ m)Photometry of z<1 3C Radio Galaxies and Quasars

WISE band 4 Detections by... Radio Morphology: 127/269 total 3C (0.47) 83/147 FRII (0.56)17/34 CSS (0.50)17/33 FRI (0.52)10/55 unk. (0.18)

35/74 type1 QSR (0.47)39/88 type2 QSR (0.44)(0.48)(0.50)

QSR torus covering frac: $\langle fc \rangle = 39/(35+39)=0.53$ (.09)

WISE L/Ledd vs. Radio Power

32 FRII type 2 QSR15 FRII LIG2 FRII unk.

0 FRI type 2 QSR 8 FRI LIG 3 FRI unk.

3 CSS type 2 QSR 3 CSS LIG 2 CSS unk.

Avail. K-band photometry limits sample size!

Summary of Results

- RL-AGN M_{BH} accretion occurs in 2 modes:
 - Thermal: 0.3>L/Ledd>10^{-2.5} Quasars (HIGs)
 - Nonthermal: 10^{-2.5}> L/Edd>10⁻⁵ LIGs
- Possible transition from filled to empty inner accretion disk at L/Ledd = 10^{-2} to 10^{-3}
- Radio/IR Power ratio varies by factor 10³
 - Jet power must depend on a 2nd parameter, e.g. BH spin
- Mean torus covering fraction $\langle f_c \rangle = 0.53 \pm 0.09$
- Larger WISE/radio samples → better statistics and AGN evolution studies.