

The Dust Emission of Lyman Break Galaxies at $1 \le z \le 4$ with Herschel

Denis Burgarella, LAM, France

& the Herschel HerMES Team & the Herschel PEP Team & the COSMOS Team

Acknowledgements

- FIR data are from the Herschel key-programme <u>HerMES</u> (S. Oliver, J. Bock) and from the Herschel key-programme <u>PEP</u> (D. Lutz)
- UV-NIR data are from <u>COSMOS</u> (N. Scoville)
- Spectroscopic redshifts are from <u>z-COSMOS</u> (S. Lilly)
- SED analysis carried out with <u>CIGALE</u> (D. Burgarella)

Why do we need FIR/submm data for UV-selected galaxies ?

Thank you Naveen for the nice introduction earlier in the afternoon

SED Fitting with CIGALE

http://cigale.oamp.fr

One or Two SFHs (expo or box)

Dust-free Stellar Spectra from Maraston Creation of dust-free emission spectra from models

0.5 < z < 2 LBGs:

From: Spitzer-24um (Burgarella et al. 2006) To: Herschel-FIR (Burgarella et al. 2011)

CIGALE SED Fitting from FUV to radio of a sample of 0.7 < z < 2.0 LBGs in GOODS-N

(Burgarella et al. 2011, ApJ 734, L12)

In average, these LBGs are:

- UV-bright: log $\langle LFUV \rangle = 10.7 \pm 0.7 L_{\odot}$
- borderline of ULIRGs: log $\langle Ldust \rangle$ = 11.9 ± 0.3 L_o
- massive:
 - $\log \langle M_* \rangle$ = 11.0 ± 0.5 M
- High UV dust attenuation:
 - A_{FUV}=3.252
- consistent with no AGN

From Spitzer (Burgarella et al. 2006, A&A 450, 69) to Herschel (Burgarella et al. 2011, ApJ 734, L12)

LBGs @ z > 2.8: Siana et al. (2008, 2009), Chapman et al. (2000), Chapman & Casey (2010), Tanvir et al. (2009), Boone et al. (2007), Webb et al. (2007)

Moving to higher redshifts ... when the size of the fields helps a lot

The LBG preliminary samples

➤ We have selected two LBGs samples in the 2deg² COSMOS field at 1 ≤ z ≤ 2.5 and 2.5 ≤ z ≤ 5.0 using color-color diagrams and we obtain (for SNR>5):

	Redshift range	Good z	Good z _{spec}	Good z _{phot} & z _{spec} w/ FIR
LBG 1	1.0 < z < 2.5	27190	2205	836
LBG 3	2.5 < z < 5.0	15592	669	34 (z _{max} ~ 4)

- SNR=5 ⇔ [f_{lim}(250um)=13mJy, f_{lim}(350um)=17mJy, f_{lim}(500um)=27mJy)
- At z>2.5 and SNR>5, the <u>pure chance association</u> (optimized to r = 0.8'') is estimated to <u>~1/3 of the sample</u>
 - o arbitrarily shifting the Herschel (RA, Dec) sources and reassociating LBGs to FIR sources → 10 chance associations for 33 candidates (i.e. Pb ~ 1/3)
 - Pb = 1 exp ($\rho_{LBG} \times S_{r=0.8''}$) = 1.21×10⁻³ or 9.98 chance associations out of 33 candidates (1/3) in excellent agreement with the simulations

The LBG preliminary samples: suggests associations are statistically OK

- > 34 LBGs @ 2.5 \leq z \leq 4.0 detected @ 5 sigmas with
 - SPIRE (104 LBGs @ 3 sigmas)
- ≻ 669 LBGs 33 LBGs @ 2.5 ≤ z ≤ 4.0 undetected @ 3 sigmas with SPIRE
- 15 000 LBGs with photometric redshifts

The dust attenuation does not decrease for UV-faint galaxies. We confirm Burgarella et al. (2006, 2011) at 2.5 < z < 4.0

* IRX-beta relation for LBGs detected if FIR with SNR > 5 @ 2.5 < z < 4 not in agreement with Meurer et al. (1999).

* For undetected ones, relative agreement with Calzetti et al. (2000) but dispersed by up to 1 mag when 2 stellar pops used (assuming an unreddened UV slope $\beta_0 = -2.5$)

* ... but similar agreement with Meurer et al. (1999) when 1 stellar popused (assuming $\beta_0 = -2.1$)

* RED LBGs are detected in FIR but BLUE (w/ z_{spec}) LBGs are not (L_{IR} estimated by SED fitting with the above restrictions on the quality).

Conclusions, Questions and Prospects

- The selection introduces biases which have to be fully accounted in the following of the study
- Most LBGs are not detectable with Herschel => stacking is necessary and will be performed
- A few percent are: a bridge between LBGs and SMGs
- FIR-detected LBGs are redder than undetected ones.
- Some of them probably host an AGN (hard X-rays)
- We see (directly from FIR data) two limiting regimes for faint UV galaxies.
- Statistically, the dust attenuation of UV galaxies does not decrease with the UV luminosity (in the range sampled here).
- ➢ Meurer's law does not provide good A_{FUV} for IR-LBGs.
- For undetected ones, we see a large dispersion by up to 1 mag but, above all, A_{FUV} is model-dependent.

This work is in progress at z>2.5 and also at 1.0< z <2.5 where many more LBGs are detected in FIR

Burgarella et al. (2011, ApJ 734, L12) <u>http://www.oamp.fr/cigale</u>

Thank you Merci

LBGs @ z ~ 1 from Spitzer 24um

(Burgarella et al. 2006)

Normalized counts in agreement with Steidel et al. 2003 dropouts

Top: Magnitude distribution of the full photometric LBG sample (*magenta*), the subsample targeted for spectroscopy (*cyan*), and the subsample with successful spectroscopic redshifts (*yellow*). *Bottom:* Fraction of the full photometric sample represented by the spectroscopically observed subsample (*cyan*) and the spectroscopically successful samples versus apparent magnitude. The black curve represents the fraction of spectroscopically observed objects that yielded successful redshifts, as a function of apparent \mathcal{R} magnitude.

Reddy et al. 2010 (BM/BX galaxies @ z ~2 from 24um)

FIG. 13.— Bolometric luminosity (L_{bol}) versus observed UV luminosity (L_{UV}) . Small points and arrows indicate galaxies detected and undetected, respectively, at 24 μ m. The 24 μ m stacked results are shown by the open squares and large arrows (*purple*). The shaded region denotes $\pm 1 \sigma$ about the mean relation implied by the correlation between L_{bol} and dust attenuation (Eq. 4). The hashed region indicates the area excluded by the fact that L_{bol} must be greater than L_{UV} . The dashed horizontal and vertical lines delineate the values of L_{UV}^* and L_{bol}^* at $z \sim 2$ (Reddy & Steidel 2009; Reddy et al. 2008), and the thicked dashed line shows the extrapolation of the relation to UV-faint galaxies (see text).

GALEX LBG Selections $0.7 \le z \le 1.6$ & $1.6 \le z \le 2.8$

Z ~ 1 SED similar in UV to hi-z LBGs

Toy Model (easier to control but more sophisticated under development with infall and outflow)

- Outflows at least in some LBGs (e.g. Shapley et al. 2003)
- Inflows from the IGM or during interactions
 Closed-box model:

Unreddened spectra from Maraston ('05)

$$\dot{\Omega}_{gas} + \dot{\Omega}_{star} = 0 \Rightarrow \Omega_{gas}(t) + \Omega_{star}(t) = M_{total}$$

$$\dot{\Psi}(t) = \Psi_0 e^{-\frac{t}{\tau}}$$

$$\begin{array}{c} \circ \\ Z_{oxygen} = -y_{oxygen} \cdot \ln\left(\frac{\Omega_{gas}}{M_{total}}\right) = 0 \\ \circ \\ Empirical \quad 12 + \log\frac{O}{H} - \frac{L_{IR}}{L_{UV}} relation \end{array} \right\} \Rightarrow \frac{L_{IR}}{L_{UV}} (A)$$

Rest-frame UV colors

What are Lyman Break Galaxies ?

- Lyman Break Galaxies (LBGs) are galaxies presenting a discontinuity at restframe wavelengths below 0.912nm
 - This discontinuity is due to a combination of the Lyman Break :
 - o stellar emission,
 - $\circ\,$ galaxy self absorption from the ISM,

integrated opacity of the IGM (Madau et al. 1996) for z > 2 LBGs.

Objective : IDENTIFY high-z galaxies

What are SMGs ?

- Submillimeter galaxies (SMGs; e.g. Blain et al. 2002) are massive galaxies with intense heavily obscured starbursts that rapidly consume their gas through star formation.
- SMGs may trace a common phase in the evolution of massive galaxies in the early universe, making them the likely progenitors of today's massive spheroidal galaxies (Swinbank et al. 2010).
- Based partly on the large increase in SFR that should accompany gas-rich major mergers, it is believed (although some debate exists) that SMGs are large, gas-rich, merger-induced starbursts, observed in a phase where their luminosity is boosted (e.g. Narayanan et al. 2009).

A link between IR-LBGs and SMGs ?

Although the morphology of LBGs is found to be diverse (Lowenthal et al. 2009, Ravindranath et al. 2006), part of the LBG population might also be young ellipticals/spheroids.

Ravindranath et al. (2006) find ~ 30% of the LBGs have profiles expected for spheroids.

The proportion of IR-bright LBGs is even lower (a few percents, Burgarella et al. 2006, Huang et al. 2005, Burgarella et al. 2011)

LBGs and Dust

Papovich et al. (2004): most LBGs have low E(B-V)

5

 Shapley et al. (2003): significant correlation between UV continuum extinction and W(Ly α)

How do we identify LBGs ?

- The Lyman Break is an efficient color-color selection to identify high-z galaxies
- Steidel et al. (1996) state that about > 70% of robust candidates are confirmed high-z galaxies at z ~ 3

2 < z < 3.5, $A_{B} < 1$ & age < 100Myr

Nature of Lyman Break Galaxies ?

e.g. Shapley et al. (2003) :

- FUV Spectra consistent with unreddened models of young star-forming galaxies with E(B-V)<0.3</p>
- ➢ SFR_{UV} ~ 10 − 100 Mo/yr
- Flat continuum

What do they look like at Z~15

GALEX/Spitzer

- Redshifts from COMBC
- 420 Lyman Break Galax

- ~ 15% are detected at 24 um (Spitzer)
- ~ 85% are undetected at 24 um (Spitzer)

SED Fitting with CIGALE *http://www.oamp.fr/cigale*

- Code Investigating GALaxy Emission (Burgarella et al. 2005, CIGALE, Noll et al. 2009)
- Several SSPs (PEGASE II and Maraston ('05)
- Several dust emission models & templates (Dale & Helou, Siebenmorgen & Krügel, Chary & Elbaz)
- Construction of the SFH with two different complex stellar population models and different amounts of attenuation
- Varius dust attenuation law (different from Calzetti's)

Another less local analog at z ~2.4

N2850.4 at z = 2.39 from Tacconi et al. (2008) • CO(7-6) emission in red, • ACS image in blue,

• NICMOS image in green (Swinbank et al. 2005).

The FUV and FIR components are only distinguishable at a scale of ~0.5 arcsec > one of the two components of the LBG analog is bright in the X-ray and FUV (left) >one is bright in the mid- and Far IR (right)

A local LBG analog: VV114

- One of these analogs to LBGs is the starburst galaxy VV114 (Grimes et al. 2006).
- In the FUV, VV114 appears as a local galaxy merger with strong similarities to typical LBGs.
- Observations support a model where a violent central inflow of gas triggers an intense starburst activity which possibly boosts the IR luminosity (lono et al. 2004; Le Floc'h et al. 2002).

VV114: STIS-FUV and ISO-15um

FIG. 1.—FUSE LWRS aperture overlaid on a HST STIS FUV and NICMOS false-color image. Only the western component is visible in the FUV image. Both images are from Goldader et al. (2002) and use a logarithmic scale map. The NICMOS false-color image is an overlay of the F110W (1.025 μ m), F160W (1.55 μ m), and F222M (2.3 μ m) images as blue, green, and red, respectively.

Visible and NIR starlight ... only 1/2 the radiation from a typical galaxy

✦ Dust and gas absorbs and re-emits $1/_2$ the starlight in the IR as thermal continuum radiation and fine structure lines.

★ The other 1/2 is found in the optical and NIR (@ z=0).

