

EXGAL 2011 Passadena 5/10/2011

What makes the cosmic infrared background?

Matthieu Béthermin IAS, Orsay, France (moving to CEA Saclay) Material at http://www.ias.u-psud.fr/irgalaxies/

The extragalactic background light (EBL)

- Optical/IR ratio ~ 3 in the local Universe (cf Driver+08)
- CIB = COB
- Indicate strong evolution of the IR properties of the galaxies

Measurements of the cosmic infrared background (CIB) level

- Absolute measurements: need an absolute photometry and an accurate removing of the foregrounds.
 - Lower limits:
 from the number counts and statistical analyses (stacking, P(D)).
- Upper limits: derived from the absorptions of TeV photons from the blazars by the COB/CIB.

Measurements of the cosmic infrared background (from Béthermin+11, CRF proceeding)

Measurements of the cosmic infrared background (CIB) level

- Absolute measurements: need an absolute photometry and an accurate removing of the foregrounds.
 - Lower limits:
 from the number counts
 and statistical analyses
 (stacking, P(D)).
- Upper limits: derived from the absorptions of TeV photons from the blazars by the COB/CIB.

Measurements of the CIB level

- Absolute measurements: need an absolute photometry and an accurate removing of the foregrounds.
 - Lower limits:
 from the number counts
 and statistical analyses
 (stacking, P(D)).
- Upper limits: derived from the absorptions of TeV photons from the blazars by the COB/CIB.

Measurements of the cosmic infrared background (from Béthermin+:astro-ph/1102.1827)

What makes the CIB?

 Origins of the infrared output of the galaxies (e.g. star formation vs accretion)
 ---> physics of galaxies

 Global evolution of the statistical properties of the infrared galaxies
 ---> cosmology

Outline

Resolving the CIB in the sub-mm domain

Modeling the evolution of the infrared populations

Anisotropies of the cosmic infrared background

Resolving the CIB

Resolving the CIB

Resolving the CIB

CIB 6% résolved (Oliver+10)

- Hypotheses: point sources
 - Poisson distribution
 - instrumental effects known (PSF, noise, filtering)
- Direct link between the source counts and the pixel histogram.

- Hypotheses: point sources
 - Poisson distribution
 - instrumental effects known (PSF, noise, filtering)
- Direct link between the source counts and the pixel histogram.

- Hypotheses: point sources
 - Poisson distribution
 - instrumental effects known (PSF, noise, filtering)
- Direct link between the source counts and the pixel histogram.

Source counting by P(D) analysis

Histograms

Fit of the histograms of the GOODS-N SPIRE maps (Glenn+10)

Confusion limited maps obtained by Herschel/SPIRE at 250, 350 and 500 microns.

Source counting by P(D) analysis

IERMES

Comptages

Counts measured by P(D) analysis of SPIRE SDP maps (Glenn+10)

- Confusion limited maps obtained by Herschel/SPIRE at 250, 350 and 500 microns.
- Counts obtained by P(D) analysis one order of magnitude deeper.
- Counts explains ~2/3 of the CIB

Principle of the PSF-fitting photometry using a prior on positions.

Model fitted to the data

MIPS Stacking Analysis

Dole et al., 2006

Stacking and clustering

Bias due to clustering estimated using 3 methods:

- Method A: convolving 24 map by SPIRE beam.
- Method B: using 24+z catalog and colors measured by stacking to build a simulation.
- Method C: Fitting the contribution of the clustering on the stacked image.

Right: Stacked image at 250 microns fitted by the following model:

$$M = \alpha \times PSF + \beta \times \left(\frac{PSF * w}{max(PSF * w)}\right)$$

wavelength	Bias due to clustering		
μm	Method A	Method B	Method C
250	5±2%	6.9±0.8%	7.7±0.5%
350	$11 \pm 2\%$	$11.7 \pm 0.9\%$	$10.3 \pm 0.8\%$
500	20±5%	20.9±1.4%	19.1±1.8%

Source counts

- Counts in agreement with previous studies (Bethermin+10b, Oliver+10, Clements+10, Glenn+10)
- Confirmation of Glenn+10 results with improved error bars.
- Redshift slices for the first time.
- Provide strong constraints for future modeling works.

Left: number counts at 250, 350, and 500 microns (Béthermin+, in prep)

Total extrapolated value of the CIB

Cumulative contribution to the CIB as a function of the flux cut (Béthermin+, in prep)

- CIB value computed from the counts and a power-law extrapolation of the faint-end.
- Agreement with the FIRAS measurements.

Outline

- Resolving the CIB in the sub-mm domain
- Modeling the evolution of the infrared populations
- Anisotropies of the cosmic infrared background

Backward evolution modelling

- Lots of model of this type published: Lagache+,Franceschini+,Gruppioni+,Le Borgne+, Béthermin+, Marsden+, Yong Shi's poster
- The typical ingredients are:
 - Cosmology
 - SED (Spectral Energy Distribution) library
 - Local luminosity function (LF)
 - Evolution of the LF with the redshift
 - Observables to fit

Fitting the counts

Number counts at 24, 160, 350, and 1100 microns (Béthermin+11)

Fit if the counts between 24 microns and 1.1 mm+ monochro matic LFs+CIB FIRAS

 Parameters ajusted with a MCMC.

Obscured star formation history

(Béthermin+11)

CIB SED

Outline

- Resolving the CIB in the sub-mm domain
- Modeling the evolution of the infrared populations
- Anisotropies of the cosmic infrared background

Fluctuations of the CIB

- CIB obtained subtracting the foreground (galactic cirrus) and the background (CMB)
- CMB removed using 143 GHz maps.
- Cirrus removed HI data.
- Information about the clustering of the sources at high-z.

Fluctuations of the CIB observed by Planck (courtesy G. Lagache)

CIB power spectrum

Power spectrum of the cosmic infrared background at 500 microns (545 GHz) and 350 microns (857 GHz) (Planck Early Paper XVIII)

Modeling the CIB fluctuations

 Pénin+11 (on arxiv yesterday): model to inteprete the CIB fluctuations. Based on the Béthermin+11 emissivities, and a HOD model.

$$C_{\ell}^{\nu\nu'} = \int dz \left(\frac{d\chi}{dz}\right) \left(\frac{a}{\chi}\right)^{2} \bar{j}_{\nu}(z) \bar{j}_{\nu'}(z) P_{gg}(k = \ell/\chi, z)$$
From evolution model
$$\bar{j}_{\nu}(z) = (1+z) \int_{0}^{S_{cut}} dS \ S \ \frac{d^{2}N}{dS \ dz}$$
Computed from the
Béthermin+11 evolution model
Halo occupation distribution
model, taking into account the
clustering between halos (P2h)
and in a halo (P1h)

Fit of the Planck data

Shot noise

Computed from the counts predicted by the Béthermin+11 model.

Planck Early Paper XVIII

Fit of the Planck data

Conclusion

- CIB resolved in the sub-mm domain with the new statistical methods (stacking, P(D)).
- The recent evolution model well describe the basic infrared statistical observables, and provide a picture of the CIB redshift distribution and obscured star formation history.
- CIB fluctuations provide information on the mass of the halos hosting