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Summary
Glassgold et al. (2007) proposed that the forbidden mid-infrared [Ne II] 12.81 micron transition is a tracer of X-ray irradiated
and X-ray heated disk gas. [Ne II] observations may detect relatively small amounts of warm gas in the inner, planet-forming
disk zone (R=10-20 AU), at the same time confirming the role stellar X-rays play in driving disk dynamics, accretion,
photoevaporation, chemistry, and eventually the formation of planets. Theories of [Ne II] line formation in disks predict - for
otherwise identical source and disk properties - a linear correlation between the [Ne II] luminosities, L(Ne II), and the X-ray
luminosities, LX. However, further parameters may be relevant. We test such predictions using two approaches:

1) We use a sample of 86 classical T Tauri stars with [Ne II] 12.81 micron observations (of which 53 have [Ne II] detections
and 54 have X-ray detections) to perform correlation studies, also with other stellar and disk parameters collected from the
literature. Although we find a significant correlation between L(Ne II) and LX over 2-3 orders of magnitude, the correlation is
dominated by systematic scatter. A tendency is also found for stronger accretors to be more luminous [Ne II] sources.
However, stars driving "micro-jets" show systematically enhanced L(Ne II), and a tighter correlation is indeed found between
L(Ne II) and the product of LX and L(O I), the latter defining the luminosity in the [O I] 6300A line, often taken to be an
indicator for gas in micro-jets.

2) We present a detailed VLT/VISIR case study of [Ne II] emission in and around the T Tau triple. This system shows an
extremely high L(Ne II) = 5E30 erg/s. The emission is concentrated at the embedded T Tau S binary, but widely dispersed
components are found along structures that have previously been identified as outflow features. A high-velocity component (v
= 126 km/s, blueshifted) is identified at the position of T Tau N.

Both results suggest that the [Ne II] 12.81 micron flux is prominently formed in outflows and jets, probably as a result of
irradiation with stellar X-rays. The line may therefore be an interesting tracer for X-ray irradiated jets/outflows. These findings
do not exclude additional  [Ne II] contributions from disk surfaces, photoevaporative flows, or accretion flows close to the star.
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12.81µm

(Espaillat et al. 2007, CS Cha)

[Ne II] 2P3/2 - 2P1/2 12.81µm

(Pascucci et al. 2007)

12.81µm

 Portrait of the  [Ne II] 12.81µm Line
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Photoionization of Ne requires 21.56 eV (41.0 eV for Ne++): 
due to X-ray or EUV photons from star?  (Glassgold et al. 2007, Gorti & Hollenbach  2008
                                                                                                Ercolano et al 2008 - see also this conference)
     

        In that case,  [Ne II] probes...
• small amounts of warm (> 1000 K) gas
• ...in the inner, spatially unresolved disk;
• i.e., at the origin of photoevaporative flows;
• tracer for magnetorotational instability?

Gas

Dust

(Glassgold et al. 1997, 2004)

Surface                    midplane

 Why is the [Ne II] 12.81µm Transition Important?

Alternative ionization sources include:
     Cosmic rays: but inner disk may be shielded by magnetized wind.
     Shocks on disks (accretion shocks), in winds or jets.

(Hollenbach & McKee 1989, Shang et al. 2002)
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(Pascucci et al. 2007)

(Espaillat et al. 2007)
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Does [Ne II] 12.81µm Flux
Depend on X-Rays, or Accretion?
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Important studies, but problem 
was small statistics then available. 
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[Ne II] line is centered
and narrow, with
FWHM = 21 km s-1

The line is compatible with 
emission from inner disk, 
or from photoevaporative flow.

Alternative Approach: Line Profile Analysis (TW Hya) 

(Herczeg et al. 2007)
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Statistical Study: Characterization of [Ne II] Sample 

New project discussed below:  
  

 [Ne II] fluxes from published literature and new observations:
Lahuis et al. (2007) - 76 targets (CTTS+HAeBe), fully reanalyzed 
Pascucci et al. (2007) - 6 targets
Espaillat et al. (2007) - 3 targets
Ratzka et al. (2007) - 1 target
J. Najita/J. Carr (GO) - 12 targets
Herczeg et al. (2007) - 3 targets
van Boekel et al. - 2 targets (T Tau) 

X-rays from our archival analysis of XMM-Newton & Chandra data:
all data were coherently reduced and analyzed, using same spectral-fit methods

Other data (dMacc/dt, dMw/dt, [O I]λ6300 data, etc) taken from literature

This results in sample of 86 CTTS:  53 [Ne II] detections, 33 UL
54 X-ray  detections, 2 UL
33 [Ne II] & X-ray detections
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Systematics
between [Ne II] luminosity,

X-ray luminosity, and 
mass accretion rate  

log dMacc/dt

1) both parameters show trends

2)   but with large scatter

3) outflow/jet sources (in blue)
show excess [NeII] emission

log LX

0.58

P<40%

P<2%
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(P = probability for absence of correlation, 
        based on three conventional tests)
(blue     =   objects with known jets)
(pink line: linear regression with slopes)

Results
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1. Use dMacc/dt as a proxy for 
mass outflow rate (“gas”)

2. multiply by LX (“radiation”)

For [Ne II] formation, 
one needs:  (1) gas,  (2) radiation:

Even better: use [OI] λ6300 as
an indicator for jet/outflow gas:
 
L([OI]λ6300) * LX

log (LX*dMacc/dt)

log (LX*LOI)

0.46

0.53

P<2%

P<4%
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cleanest correlation
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N

S
0.7”

Case Study:
T Tau observed with

VLT VISIR

• resolving 
  power 

R = 30,000

• used 3 slit
orientations

• slit width 0.4”

(R. van Boekel,
M. Guedel, 
Th. Henning,
F. Lahuis 2008, 
submitted)
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N
S

line width 
95 km s-1

high-velocity
component

Example [Ne II] lines from different regions around T Tau

(redshifted and blueshifted)
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N

S

-23...-36

+34...+46

-126

+4...+14-9

-119
+42

-44Analogous [SII] 
study by Böhm & 
Solf (1994)

(Herbst et al. 2007)

T Tau NW
HH object

summary: characteristic
redshift and blueshift
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(Solf & Böhm 1999)

Possible Geometry
of the T Tau Outflows
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Simple Ionization and Emissivity Estimate  (e.g. Glassgold et al. 2007)

photoioniz.
Ne → Ne+

recombination
Ne++ → Ne+

CX
Ne++ → Ne+

photoioniz.
Ne+ → Ne++

recombination
Ne+ → Ne

CX
Ne+ → Ne

x0,1,2 fractional abundance of Ne, Ne+, Ne++ ,            and similar eq. for Ne++

formation of Ne+ destruction of Ne+

1. Ionization rate

spectral photon      ionization        #photoelectrons
flux density            cross section   per primary ionization

2. Ionization equilibrium
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nH

LX

3. Define emission region and irradiating spectrum:
Source distance from star r=r1...r2, radius R

    Source density nH
Stellar LX and kT
X-ray spectral range

4. Assume ambient electron density 
(from shocks etc, xe ≈ 0.1)

5.  Line flux = emissivity of transition * V

Examples:  LX = 2x1030 erg s-1 1.5x1031 erg s-1  
              r = 5-15 AU, R = 5.6 AU 300-400 AU, R = 150 AU 

nH = 106 cm-3  nH = 105 cm-3 

L ≈ 1.3x1028 erg s-1 L ≈ 1.1x1029 erg s-1

Rr2

r1
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[OI] [1997]  (Dougados et al. 2002)

Although we suggest here that jets and outflows produce [Ne II] emission,
we do not exclude other contributions:

Alternative 1:    Part of emission from disk surface layer 
(Glassgold et al. 2007, Ercolano et al. 2008) 

Alternative 2:    from photoevaporative flow (Alexander 2008), but v ≈ 10 km s-1

Alternative 3:   from shocks in jets: but why is there a trend with X-rays? 
One needs high vshock  ≈ 100 km s-1 

(Hollenbach & McKee 1989; D. Hollenbach, priv. comm)

Alternative 4:   from ionization and excitation in strongly absorbing 
accretion flows close to the star. 

(see Güdel et al. 2008, A&A, 478, 797)        

Alternative Models



Rhodos, 10  July 2008

Summary

 [Ne II] 12.81µm luminosity is only moderately correlated with LX or dMacc/dt  

 Better correlation is found if jet/outflow parameters are involved

 CTTS with jets show high [Ne II] 12.81µm fluxes

 T Tau N+S: we find spatially resolved [Ne II] emission
[Ne II] line is shifted up to 126 km s-1, 
line is broadened up to 90 km s-1: 
→ clear evidence for contribution by outflows/jets

Further contributions from disk surface layers, photoevaporative 
flows, or accretion flows are not excluded

Details in forthcoming papers (van Boekel et al. 2008, Güdel et al. 2008)


