CTTS Excess Emission from 0.8 to 2.4 μ m

Will Fischer (U. Toledo), Suzan Edwards (Smith College), Lynne Hillenbrand (Caltech), John Kwan (UMass)

Abstract

We present the first-ever CTTS excess emission SEDs between 0.8 µm and 2.4 µm. With SpeX on the IRTF, we obtained medium-resolution (R=2000) spectra of 16 CTTS spanning a broad range of mass accretion rates. Here we present the excess SEDs of a 7-star subsample with spectral types of K7/M0 for which the WTTS V819 Tau is a suitable template. We find more emission than expected from the sum of the accretion-heated photosphere that dominates shortward of 0.5 μm [1] and warm dust from the dust sublimation radius in the inner disk that dominates beyond 2.2 μm [4], consistent with our earlier finding [2] that the 1 μm veiling exceeds the contributions from these 2 sources. Accounting for this emission may require modification of the magnetospheric accretion scenario and revision of accretion luminosities in CTTS.

Veilina

I. Data & Initial Sample

- **SpeX:** 0.8 < λ (μm) < 2.4; 26-27 Nov 2006; R = 2000
- . Calibration for short-λ veiling: 30 Nov - 1 Dec 2006
- HIRES: r_B; R = 34,000 NIRSPEC: r_y; R = 25,000
- Established r_y / Paγ relation [2] supports change in r_y over 3-4 day interval (SpeX vs. NIRSPEC)

CTTS	SpeX r _Y	SpeX Paγ EW (Å)	SpeX / NIRSPEC r _y Ratio	SpeX / NIRSPEC Paγ Ratio
DL Tau	1.8	16.7	1.8	1.0
DG Tau	0.9	10.6	1.8	1.2
BP Tau	0.5	6.8	2.5	1.4
DO Tau	0.7	6.2	2.3	0.7
DK Tau	0.5	3.5	1.3	1.4
LkCa 8	0.1	1.0	1.0	1.7
AA Tau	0.2	0.9	2.0	4.5

II. SED Determination

DG Tau

III. SED Results

Emission Excess

DG Tau

, DO Tau

LkCa 8

2.0

DL Tau

Expected Veiling/Excess: Cool component (1400 K) scaled to SpeX r_K

Hot component (8000 K) scaled to HIRES r_B, assumed constant over 3-4 day interval

IV. Conclusions

- Excess emission from 0.8 to 2 μ m exceeds expectations in all 7 CTTS
- Excess shape and strength correlate with Paschen series
 - 1. Strong Paschen lines (DL Tau, DG Tau): SED rises toward shorter λ ; 0.8 µm excess exceeds photosphere
 - 2. Intermediate Paschen lines (BP Tau, DO Tau, DK Tau): SED relatively flat; 0.8 µm excess comparable to photosphere
 - 3. Weak Paschen lines (AA Tau, LkCa 8): SED falls toward shorter λ ; 0.8 µm excess much weaker than photosphere

Possible causes:

- 1. Multi-temperature accretion spots
- 2. Additional emitting region with 1400 K < T < 8000 K
- Likely requires revision of previously derived accretion luminosities

References

[1] Calvet & Gullbring 1998, ApJ, 509, 802 [2] Edwards et al. 2006, ApJ, 646, 319

[3] Gullbring et al. 1998, ApJ, 492, 323 [4] Muzerolle et al. 2003, ApJ, 597, L149