H₂O and CO₂ Ices around Extragalactic Young Stellar Objects -- AKARI 2-5um spectroscopy --

Takashi SHIMONISHI¹, Takashi ONAKA, Daisuke KATO, Itsuki SAKON, Yoshifusa ITA, Akiko KAWAMURA, and Hidehiro KANEDA

¹The University of Tokyo

Key words: Shimonishi et al.2008, ApJ, 686, L99 circumstellar matter — ices — extragalactic YSOs — Magellanic Clouds

1. Introduction

Ices around YSOs

Important reservoir of heavy elements and complex molecules (Tab.1, Fig.1)

> An origin of a cometary ice and a planetary ocean (Tab.1) Observed by infrared absorption bands

Formation mechanisms of ices are not understood well

Extragalactic YSOs

> The diversity of a chemical balance around YSOs in extragalactic environments

Few spectroscopic observations of ices toward extragalactic YSOs so far

The Large Magellanic Cloud (LMC) The nearest (~50kpc) irregular galaxy to our Galaxy >An ideal environments for the study of extragalactic YSOs due to its proximity and low metallicity

■We have been performing the NIR spectroscopic survey of the LMC with the infrared satellite AKARI We spectroscopically confirmed 7 massive YSOs which show strong absorption features of HzO (3.05um) and CO₂ (4. 27um) ices Derived CO_2 / H_2O ice ratio is 0.45 ± 0.17 , which is higher than that of Galactic massive YSOs (0.17 ± 0.02) We suggest that strong UV radiation field and/or high dust temperature in the LMC are responsible for the high CO₂ ice abundance

Results and Discussion

Table 1 Abundances of Ices toward Various Objects

Species	Galactic YSO [%]	Comets [%]	Extragalactic YSO (LMC) [%]	
H2O (water)	100	100	100	
CO2 (carbon dioxide)	17	3-6	? → 45 *	
CO (carbon monoxide)	1-50	7-20	?	
CH4 (methane)	1-2	0.2-1.2	?	
CH3OH (methanol)	2-5	~2	?	
NH3 (ammonia)	3	~1.5	?	

2. LMC NIR Spectroscopic Survey

>AKARI is the first Japanese infrared astronomical satellite ≻2–5um, R~20, slit-less prism multiobject spectroscopy ▶667 fields are observed so far (Fig.1 right), an enormous NIR

An abundance of CO2 ice toward massive YSOs in the LMC is higher than Galactic massive YSOs !!!

Fig.5 AKARI NIR spectra of selected 7 massive YSOs * The formation mechanism of CO2 ice around YSO is not understood at this time. Table.2 Possible formation mechanisms of the CO2 production

spectral database is expected All of these signals are 2-5um spectra

Spectroscopy frame

Imaging frame

Fig.2 *AKARI* slit-less multiobject spectroscopy

3. The Selection of YSOs

10′

2,000,000

Infrared sources (Spitzer SAGE survey) In AKARI survey area (**Fig.1** right)

<u>450</u> sources selected by the photometric selection.

A strong UV radiation field (e.g. Israel & de Graauw, 1986 and generally high dust temperature of the LMC (e.g. Sakon et al. 2006) may be responsible for the high CO2 ice abundance around Magellanic YSOs.

	Proccess	Explanation	Кеу
6)			parameter
	UV photolysis	Laboratory experiments indicate that UV irradiation is necessary to produce CO2 ice	UV radiation field
	Grain Surface Chemistry	Theoretical studies indicate that high dust temperature (14~18K) is necessary to produce sufficient amount of CO2 ice.	Dust temperature

5. Future Works

Follow-up Observations by AKARI (this winter) ➢Another spectroscopy mode (R~80, 2.5-5∪m) Targets are NIR-interested objects found in our Partially observed spectroscopic survey (including YSOs in Fig.5)

> More accurate estimation of column densities New species of ice in the LMC ???

Problems of photometric selection Photometrically selected YSO candidates include many dusty AGBs because SEDs of these two objects are similar > But, a presence of the CO2 ice is able to distinguish YSOs since the CO2 ice is not detected toward dusty AGBs.

Fig. 7 Initial results of follow-up observations

We investigated a NIR spectrum of photometrically selected YSO candidates. Finally, 7 massive YSOs (Fig.5) are discovered

