Spitzer observations of circumstellar discs: T Tauri stars in the star forming cloud MBM12

G. Meeus, A. Juhász, Th. Henning & J. Bouwman AIP & MPIA, Germany

Discs around young stars are the birthplace of planets. We use Spitzer spectra to constrain disc and dust evolution in T Tauri stars in the 2 Myr-old MBM12 cloud. We model the 10 micron feature, and relate dust properties to stellar parameters and disc properties.

Observations

with IRS: 7 members detected (spectral type K3 to M5) • all show the 10 micron silicate emission feature, probing warm dust located in the disc atmosphere

Fig. 3: Fit by the TLTD model (2 Layer Temperature Distribution, Juhász et al. 2008), and the following species: amorphous silicates, carbon and silica, as well as forsterite and enstatite, of 0.1, 1.5 and 6.0 micron.

Fig. 1: Spitzer/IRS spectra of 7 TTS. A wide variety in feature shapes and strengths is observed.

Silicate feature: evidence for grain growth

Crystalline dust

varying amount of crystallinity in sample (2 to 76% for MBM12-6) crystalline mass fraction not related to spectral type

Fig. 2: Up: Continuum-normalised 10 micron spectra. The later the spectral type, the weaker the feature, indicative of grain growth. Below: Relating feature shape and strength with dust growth.

Disc geometry versus grain growth

flux ratio 24/8 micron: proxy for degree of disc flaring: flaring discs intercept more stellar light at longer λ than flat discs.

the larger the flux ratio (larger flaring angle), the smaller the derived grain size.

sources with larger grains tend to have less flaring discs: => more grain growth and settling into disc mid-plane.

Conclusions

We studied the dust around 7 TTS in MBM12, and fitted the 10 micron feature with the TLTD approach. We found:

evidence for grain growth, later spectral types have larger dust grains Iarge variety in crystalline mass fraction, independent of spectral type and not related to grain growth

relation between disc flaring and grain size, pointing to dust settling