2mass-planck-allsky

Science Collaborations

Alma-alpine

ALPINE
ALMA Large Program to Investigate C+ at Early Times

ALPINE (the ALMA Large Program to Investigate C+ at Early Times) is a 70 hour survey with the Atacama Large Millimeter Array (ALMA). The survey measures the far-infrared properties of 118 galaxies in the early Universe. IPAC scientist Andreas Faisst is the U.S. Lead PI, responsible for ancillary data management.

More Information
Cosmos

COSMOS
Cosmic Evolution Survey

The Cosmic Evolution Survey (COSMOS) is an astronomical survey designed to probe the formation and evolution of galaxies as a function of both cosmic time (redshift) and the local galaxy environment. The survey covers a 2 square degree equatorial field with imaging by most of the major space-based telescopes and a number of large ground based telescopes, with many ongoing surveys. Over 2 million galaxies are detected, spanning 75% of the age of the Universe. The COSMOS survey involves more than 100 scientists in a dozen countries. The primary goal of COSMOS is to study the relationship between large scale structure (LSS) in the universe and the formation of galaxies, dark matter, and nuclear activity in galaxies. This includes a careful analysis of the dependence of galaxy evolution on environment. The wide field of coverage of COSMOS will sample a larger range of LSS than any previous HST survey. The COSMOS team includes many IPAC scientists and IRSA hosts the multi-mission data.

More Information
Goals

GOALS
Great Observatories All-sky LIRG Survey

The Great Observatories All-sky LIRG Survey (GOALS) combines imaging and spectroscopic data from NASA's Spitzer, Hubble, Chandra, and GALEX space-borne observatories in a comprehensive study of the most luminous infrared-selected galaxies in the local Universe. In a JWST/ERS program, four nearby LIRGs selected from the GOALS sample to have a range of properties, such as relative starburst and AGN power, merger stage, luminosity, infrared spectral slope, and optical depth, are being observed. GOALS is led by a large team of IPAC scientists, and related data products and tools are hosted on IRSA.

More Information
Nirwl_logo

NIRWL
Near-Infrared Weak Lensing To Measure the Mass of Overdensities at z>1

Measuring weak gravitational lensing (WL), a powerful probe of the distribution of dark matter, is one of the primary science goals of the next decade of large extragalactic surveys with LSST, Euclid, SKA and WFIRST. Currently, however, the WL analysis has primarily been on optical-band data (e.g. HST/ACS, DES, and HSC- SSP). Near-infrared (NIR) imaging has thus far never been used for wide-field weak lensing measurement although it is now well-known that it provides superior galaxy shape measurements at z > 1 due to morphological k-correction. NIRWL aims to present the first galaxy shear catalog with the largest set of archival NIR images from the two widest HST/WFC3 surveys: CANDELS and COSMOS-DASH. Our program will aim to 1) test the fidelity of the resultant NIR WL map of dark matter in COSMOS with existing, optically- derived maps, 2) reveal galaxy over-densities at z > 1 in clusters/groups which are otherwise unknown due to photometric redshift uncertainties, 3) derive stellar/baryonic to dark matter mass ratios at z >1. Measuring these ratios on group and low-mass cluster scales will trace the relationship between the growth of large scale structure and the buildup of stellar mass thereby allowing a more complete understanding of galaxy evolution, and comparison with cosmological models over a relatively understudied redshift range. Due to the exceptional depth and spatial resolution of HST, and by leveraging the current state-of-the-art understanding of NIR detector/PSF systematics, our program will serve as a critical stepping stone for NIR WL science in upcoming surveys, with Euclid and Roman.

More Information
Uvudf

UVUDF
Panchromatic Hubble Ultra Deep Field: Ultraviolet Coverage

The Panchromatic Hubble Ultra Deep Field: Ultraviolet Coverage (UVUDF) is a treasury Hubble Space Telescope program using the WFC3-UVIS detector with the F225W, F275W, and F336W filters. These UV images will reach point source detection limits of AB=29, a factor of ten fainter than the GALEX ultradeep surveys. The project’s PI is IPAC’s scientists Harry Teplitz who oversees the source extraction and analysis of images which are carried out at IPAC. The primary UVUDF science goals are: (1) investigate the episode of peak star formation activity in galaxies at 1 < z < 2.5; (2) study the star formation properties of moderate redshift starburst galaxies; (3) probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (4) examine the escape fraction of ionizing radiation from galaxies at z~2-3; (5) measure the star formation rate efficiency of neutral hydrogen gas at z~1-3.

More Information
Nirissgrism

PASSAGE
Parallel Application of Slitless Spectroscopy to Analyze Galaxy Evolution

A wide field pure-parallel survey of emission-line galaxies spanning a wide range of cosmic time. With up to 600 hours of parallel JWST/NIRISS observations in Cycle 1, PASSAGE will spectroscopically discover many dozens of the brightest Ly-alpha line emitters in the reionization epoch, and also detect Ly-break galaxies independent of their Ly-alpha lines. This will provide the first unbiased determination of the EW(Ly-a) distribution, and potentially evidence for ionized bubbles. PASSAGE will also obtain stellar abundances in bright galaxies, and a census of brown dwarfs deep into the Galactic halo.

More Information
Smog

SMOG
Spitzer Mapping of the Outer Galaxy

The Spitzer Mapping of the Outer Galaxy (SMOG) was envisioned by its principal investigator, IPAC scientist Sean Carey and it is one of the selected Spitzer Legacy Science programs in cycle 5. SMOG is a 21 square degree area mapping of a representative region of the outer Galaxy (l=102-109, b=0-3) using Spitzer's IRAC and MIPS instruments. These data combined with previous and future surveys in the submillimeter and millimeter wavelength ranges can be used to measure the specifics (rate, IMF) of star formation. This direct measurement of the star formation efficiency can contribute to the large body of knowledge on the inner Galaxy, nearby molecular clouds and massive star forming regions, the Magellanic clouds and galaxies at larger distances. SMOG provides a set of optimally reduced mosaics and well-characterized source catalogs to the scientific community and just like previous large Spitzer local group mapping programs (GLIMPSE, MIPSGAL & SAGE) it will be a fertile source for studying such topics as evolved stars, Galactic structure, dust physics and the diffuse ISM.

More Information
Transiting_exoplanets_roman

Transiting Exoplanets with Roman

NExScI at IPAC has partnered with GSFC and other university institutions to develop the infrastructure necessary to conduct an exoplanet transit survey with the Roman Galactic Bulge survey. The Roman Galactic Bulge survey, designed to find exoplanets through microlensing, will also detect 10s of thousands of transiting exoplanets – these transiting exoplanets can be used to study demographics of exoplanets in various galactic environments and the multi-band Roman observations may be used to characterize potential planets. This program will develop simulated data products and the tools necessary to identify and verify transiting exoplanets in the dense environment of viewed towards the Galactic Bulge. All data and tools will be made available to the public in preparation for the Roman operations. The program also contains a strong diversity and inclusiveness component to engage local community college students.

More Information
Wisps

WISPS
WFC3 Infrared Spectroscopic Parallel Survey

The WISP survey is a large Hubble Space Telescope pure parallel program with the WFC3 G102 and G141 infrared grisms. The broad, continuous spectral coverage of the G102 and G141 grisms provides the best currently feasible measurement of the star formation rate continuously from 0.5 <z < 2.5. The primary WISP science goals are to: (1) measure the star formation history over the last 10 billion years; (2) probe galaxy clustering on Mpc scales at z=1-2; (3) constrain the evolution of dust extinction and metallicity as a function of mass and luminosity; (4) conduct a serendipitous search for highly luminous z >6 Ly-alpha emitters. The WISPs team includes several IPAC scientists, and data processing of images and spectra is carried out at IPAC. Further details can be found in the canonical paper: Atek et al. (2010).

More Information