# sSFR Enhancement in Close Major-Merger Pairs --- Spitzer Observations

C. K. Xu IPAC, Caltech

### **Collaborators:**

D. Domingue (GCSU) Y.-W. Cheng (NCU) N.Y. Lu (IPAC) Y. Gao (PMO) J.S. Huang (CfA) J. Mazzarella (IPAC) R. Cutri (IPAC) T. Jarrett (IPAC) W.-H. Sun (TNU) J. Surace (IPAC)

# Spitzer Observations of Local Pairs (Xu et al. 2010, ApJ, 713, 330)

Sample:

- 27 K-band selected z=0 pairs (complete sample)
- all have measured redshifts for both components
- S+S and S+E pairs (E+E pairs excluded)

### Observations (37 hours, Spitzer GO2):

- images in 4 IRAC bands:
  - 3.6 and 4.5 µm bands -- mainly from old star lights .
  - 5.8 and 8.0 µm bands -- mainly from dust emission.

• maps in 3 MIPS bands (24, 70, 160 μm): most of dust emission, good star formation rate indicators.

# 15 S+S pairs --- 56 % of the sample



SDSS image + 24µm contours

IRAC image + 70µm contours

2010.11.03

## 12 S+E pairs --- 44 % of the sample



SDSS image + 24µm contours

IRAC image + 70µm contours

2010.11.03

# Specific SFR (SFR/M) of individual S galaxies

- S in S+E mixed with single spirals.
- low mass S in S+S: no enhancement.
- massive S in S+S: in two groups:
  (1) red population
  (2) elevated SFR/M
- 3 LIRGs (all in S+S)
- no ULIRG

Control Sample: single spirals selected from SWIRE/SINGS; one-to-one mass-matched to paired spirals. 2010.11.03



## sSFR enhancement

Enhancement:  $\varepsilon = \log(SFR/M)_{KPAIR-S} - \log(SFR/M)_{control}$ 

• Only massive S in S+S pairs show sSFR enhancement

- No sSFR enhancement for low mass S in S+S pairs
- No sSFR enhancement for S in S+E pairs, either.



• Why are S in S+E pairs behave differently from those in S+S pairs ???

# S+E pairs have higher local density than S+S?Answer is No :







- Concordant global SFR between two galaxies in massive S+S pairs.
- But not for nuclear SFR (Joseph et al. 1984).



2010.11.03

Can "Holmberg effect" be due to the sSFR dependence on local density?



### Or is it due to the sSFR dependence on pair separation? No!



• SEP = s\_projected/(r\_primary + r\_secondary)

2010.11.03

### Can sSFR of galaxies be modulated by IGM in DMH?

- The "Holmberg effect" in S+S pairs and the non-enhancement of S galaxies with E companions reveal a link between the sSFR of two galaxies in a pair.
- Our conjuncture: the correlation is due to the modulation of the sSFR by the IGM in the dark matter halo (DMH) that the two galaxies share.



## SFR/M enhancement: Primaries and Secondaries

Minor merger pairs (Woods & Geller 2007):



## Mass Dependence of SFR/M enhancement

#### Major merger pairs (our result):

### Pairs including minor mergers:



no enhancement in low galaxies
strong enhancement in massive galaxies.



• minor-merges: Completely opposite!

# Summary

- 1) Spitzer observations of a subsample of 27 S+S and S+E pairs show diversified star formation activities (from very active LIRGs to very quiescent galaxies).
- 2) Compared to a control sample of single normal spiral galaxies, only massive spirals in S+S pairs show significant sSFR (SFR/M) enhancement.
- 3) No sSFR enhancement is found in spirals in S+E pairs.
- 4) sSFR's of the primaries and secondaries are correlated (Holmberg effect). The correlation may indicate modulations of sSFR by the IGM in the dark matter halo (DMH) surrounding the pair.
- 5) sSFR enhancement of spiral galaxies in major-merger S+S pairs behaves very differently from that of S in minor-merger S+S pairs: no enhancement in low mass spirals, and equal enhancement for primaries and secondaries in massive pairs.