Stormy Cosmos: Theoretical Overview

So, it works in Practice...but does it work in Theory?

So, it works in Theory....so What?

"a common thread of non-equilibrium physics" Non-equilibrium, equilibrium, & steady-state physics

> Motte et al. 2010 Rosette

•Astrochemistry of Shocks and Other Dynamic Interstellar Processes - shocks, PDRs, XDRs, diffuse ISM

Thermodynamics and Mechanics of the ISM - jets, winds, cosmic-rays, SN

Coupling of Radiation, Gas and Dust - dust emission, PAHs, grain chemistry, polarimetry, SFR

Secular Evolution of ISM Properties over Galactic and Cosmic Timescales – starburst galaxies, evolved stars, dwarf galaxies, SFR, molecules at high z

Astrochemistry of Shocks and Other Dynamic Interstellar Processes

 $\begin{array}{ll} OH^+/H_2O^+ \sim 3-15 & \mbox{van Dishoeck \& Black 1986} \\ n(H_2)/n \sim 2-8\% & \mbox{Non-equilibrium } H_2 \mbox{ abundance!} \\ A_V \sim 3 & \\ Also \ get \ \zeta_{cr} \ \ van \ Disoeck \& \ Black 1986 & \end{array}$

J - Shocks

Hollenbach & McKee 1989

$$z_{1/2} = 5.2 \times 10^{14} b^2 \left(\frac{10^{\circ} \text{ cm}^{\circ}}{\text{n}}\right) \left(\frac{100 \text{ km s}^{\circ}}{\text{v}_{\text{s}}}\right) \text{ cm}$$

Hollenbach & McKee 1989

 $O + H_2 \longrightarrow OH + H$ $OH + H_2 \longrightarrow H_2O + H$ T > 400 K

J - Shocks

High [OI]/[CII] [SiII], [FeII] High Line/Continuum High J CO lines

Hollenbach & McKee 1989

C-Shocks Draine, Roberge, Dalgarno 1983 T~3000 K 40 H₂ 0-0 10⁻² (a) v " 3000 Velocity [km s⁻¹] 0 00 00 v_=40 km s⁻¹ v, 9.665 7[K] $n_0 = 10^5 \text{ cm}^{-3}$ 10-3 I (erg cm⁻² s⁻¹ sr⁻¹) 12.28 Large Line/L_{FIR} OI 63.19 1000 No [CII] 10-4 6.910 3.846 145.5 2.122 $v_s \sim 40 \text{ km/s}$ 10-5 5.511 0 0 $\log_{10}[n(M)/(n_{0x}-n_{c0})]$ H20 log₁₀[n(H)/n_H] ∾ 4 28.22 3.482 Н 2 10-6 H_2O 30 40 10 20 50 v_s (km/s) ΟН CO peak J~ 5<u>-10</u> -4 02 10' -6 -6 2 6 8 0 4 [ابابار] (erg cm⁻² s⁻¹ s⁻¹) 5 4 Distance [10¹⁶ cm] $Z \sim 10^{16} cm$ Kaufman & Neufeld 1996

Draine & Roberge 1984

10

10-8

5

10

20

25

30

15 ل

Dynamics, Cooling, and Chemistry of Protostellar Outflows

Nisini et al. 2010 (WISH)

Spitzer IRS H₂ 0-0 S(1)

H₂O Cooling ~ 25% of shock energy!

Dynamics and Chemistry of SN Remnants

W28 Supernova Remnant

Neufeld et al. 2007

Photodissociation Region (PDR)

Warm H T=8000 K $n = 0.3 \text{ cm}^{-3}$ Gas phase in which FUV radiation plays a role in the heating and/or chemistry

FUV: 6 eV – 13.6 eV

Physical Conditions in Star Forming Regions

Habart et al. 2010

High J CO Problem

Dense Clumps
 Additional Heating

 (Shocks or turbulence)
 Non-equilibrium advection

Observations of H₂ and CO: Too warm? 1)CO(J=7-6) and CO(14-13) in PDRs M17 (Harris et al. 1987; KAO)

2)H₂ 0-0 S(1), S(2), S(4) Orion Bar (Allers et al. 2005; IRTF)

3)H₂ 0-0 S(0), S(1), S(2), S(3) Taurus Cloud (Goldsmith et al. 2010 Spitzer)

Dedes et al. 2010 using KOSMA-tau

Herschel Observations → [OI], [CII], [CI] total cooling → total heating H₂, high J CO, H₂O, OH

XDRs

X-rays dominate the Heating and Ionization

AGNs:

Maloney et al. 1996 Meijerink et al. 2007 Spaans & Meijerink 2008

Protoplanetary Disks: Meijerink et al. 2008a Meijerink et al. 2008b

Shocks: Maloney et al. 1996

σ~ 1/v³ atomic photoionization cross section

Energy dumped into molecular gas Photoionized electron energy goes into Coulomb heating

Probing AGNs

XDR: OH^+ , H_2O^+ emission ion-neutral reactions $H^+ + O \rightarrow O^+ + H$ $O^+ + H_2 \rightarrow OH^+ + H$ $H^+ + OH \rightarrow OH^+ + H$ $OH^+ + H_2 \rightarrow H_2O^+ + H$ Maloney et al. 1996 van der Werf et al. 2010

> OH, H₂O emission neutral-neutral reactions $O + H_2 \longrightarrow OH + H$ $OH + H_2 \longrightarrow H_2O + H$

high J (13-12) CO lines

Thermodynamics and Mechanics of the ISM What is the cooling time and the dynamical time?

HI gas cooling:

$$t_{\text{cooling}} = 6 \text{x} 10^6 \text{ yr} (\text{T} = 8000 \text{ K})$$

 $t_{\text{cooling}} = 3 \text{x} 10^4 \text{ yr} (\text{T} = 100 \text{K})$

HI Turbulence:

$$V = V_0 l^q$$
Line-width size
relation
For large $l P_{turb} > P_{th}$
Take l for $P_{th} > P_{turb}$

$$\Psi \approx 0.1 (T = 100 \text{ K})$$

 $\Psi \approx 0.3 (T = 8000 \text{ K})$

Wolfire et al. 2003

Wolfire, McKee, Hollenbach, & Tielens (2003)

T = 7860 n = 0.35 cm⁻³ WNM

T = 85n = 33 cm⁻³ CNM

Langer et al. 2010

C II Cooling/H (CNM) > 10 CII Cooling/H (WNM)

C II emission isolates the CNM clouds. Previously seen only in absorption.

GOT C+

Heiles & Troland 2003, ApJ, 586, 1067

Are There Phases in the ISM? Vaquez-Semadeni 2009

50% of gas mass in unstable Temp ?

Really 25% of WNM in unstable Temp or 15% of total mass.

In plane dominated by TI. Out of plane by dynamical processes.

Numerical Simulations No or weak TI: Vazquez-Semadini et al. 2000, Gazol et, al. 2001, Gazol 2005

Significant TI: Piontek & Ostriker 2005, Hennebelle & Audit 2007, Koyama & Ostriker 2009

Heiles & Troland 2003, ApJ, 586, 1067

Are There Phases in the ISM? Vaquez-Semadeni 2009

50% of gas mass in unstable Temp ?

Really 25% of WNM in unstableHerschelSOFIAHELP!STO

Numerical Simulations No or weak TI: Vazquez-Semadini et al. 2000, Gazol et, al. 2001, Gazol 2005

Significant TI:

Piontek & Ostriker 2005, Hennebelle & Audit 2007, Koyama & Ostriker 2009

Turbulence/Shocks in Diffuse Gas

CH⁺ Problem

 $C^+ + H_2 \rightarrow CH^+ + H$ $\Delta E/k = 4640 \text{ K}$

Shocks?

Pineau des Forêts et al. 1986 **Turbulent Dissipation ?**

Godard et al. 2009

HCO⁺ Problem Godard et al. 2010 CO Problem Liszt 2007

Falgarone et al. 2010

Mechanical Energy Input to the ISM

van Kempen et al. 2010 (WISH)

Fischer et al. 2010 (SHINING)

OH Superwind! May halt star formation

Mechanical Energy Input to the IM

van Kempen et al. 2010 (WISH)

Fischer et al. 2010 (SHINING)

OH Superwind! May halt star formation

Coupling of Radiation, Gas and Dust

Cluster interaction, OB protostar evolution, triggering.

Schnieder et al. 2010 (HOBYS)

Spitzer: GLIMPSE + MIPSGAL 3.6 μm - 70 μm Herschel: Hi-GAL 70 μm - 500 μm

Motte et al. 2010 (Hi-GAL)

What forms the filaments and cores?

Star formation occurs along filaments. c2d + Gould's Belt

Gravity Turbulence Magnetic Fields

Filaments fragment by gravitational instability

ISM Properties over Galactic and Cosmic Time

Galaxy Formation and Evolution

Galaxy Building Feedback Star Formation

Millennium Simulation

125 Mpc/h

Bouwens et al. 2010

250µm

Deep HERMES and PEP SurveysGOODSMassive Star Forming Galaxies to Z ~ 4

Galaxies Galaxies! Everywhere!!

10 arcmin

Effects of Metallicity

SMC <mark>8μm, 24 μm, 160 μm</mark>

LMC, SMC: HERITAGE (Meixner) Dwarf Galaxy Survey: 1/50 < Z < 1/20 (Madden)

Also SHINING (Sturm) HER33ES (Kramer) KINGFISH (Kennicutt)

Heating $\propto Z_{dust}$ Cooling $\propto Z_{gas}$ ISRF $\propto 1/Z_{dust}$

Shielding Column for H_2 ,CO $\propto 1/Z_{dust}$

Leroy et al. 2007

Dark Molecular Gas

1)Add turbulent density distribution 2)Applied global GMC properties **3)**Calculated cloud masses

Wolfire, Hollenbach, & McKee 2010

$M(R_{co}) = 1 \times 10^{6} M_{\odot}$ $\overline{N}_{22} = 0.75$
$ \overrightarrow{\mathfrak{g}}_{0.6} = \operatorname{Dark}_{Z'= 0.5} = $
\overline{Z} Gas $Z' = 1.0$
1 10 100
G _o '

Leroy et al. 2007

Carilli et al. 2010

Astrochemistry of Shocks and Other Dynamic Interstellar Processes

Models provide emission/absorption line diagnostics to obtain gas physical conditions. (T, n, FUV, cosmic ray, X-ray fields).

Line emission/absorption provides gas abundances and gas dynamics (turbulence, shocks).

Provides an understanding of how molecules form under a variety of conditions (including gas and grain reactions).

Provides probes of star formation and outflow processes.

Thermodynamics and Mechanics of the ISM

Provides for an understanding of the cycle of the ISM warm → cold → molecular → stars

Provides for an understanding of the geometry of the diffuse and dense ISM (clumpy, smooth, sheets, filaments, swiss cheese or billiard balls?)

Provides an understanding of feedback from stars, SN, protostars, disks, and AGN to the ISM (IGM).

Coupling of Radiation, Gas and Dust Dust traces the radiation field and gas mass

Provides opacity for molecule formation

Probes the magnetic field

 Secular Evolution of ISM Properties over Galactic and Cosmic Timescales
 Provides an understanding of galaxy formation and evolution

Provides an understanding of star formation history of the Universe

