The Dusty Universe: From ISO and Spitzer to Herschel, SOFIA, and JWST

Xander Tielens

Leiden Observatory

Key Questions

- Where: Origin of Interstellar dust
- What: Inventory of interstellar dust
- How: key processes in its formation and evolution
- When: interstellar dust over the ages
- Why: do we care

Spitzer Survey of the Large Magellanic Cloud: Surveying the Agents of a Galaxy's Evolution (SAGE), PI: Meixner

http://sage.stsci.edu/

IRAC 3.6 μm IRAC 8.0 μm MIPS 24 μm

Gordon & SAGE team (Meixner et al. 2006)

Inventory of the LMC

AGB stars: Blum et al. (2006) YSO candidates: Whitney et al. (2008) PNe: Hora et al. (2008) Empty field = background galaxies: Whitney, Sewilo et al. (2008)

Final Source Counts: ~6.3 million point sources >650,000 red giant stars >45,000 dusty evolved stars >1200 Young Stellar Objects

Sewilo & SAGE Team (2006)

AGB Dust Mass Loss Return

First cut based on colors

SAGE-Spec: LMC PI: F. Kemper

First analysis based on spectroscopy: to be completed

Woods et al. submitted: source ID

SAGE-LMC Inventory

Component	Mass or rate
Total mass of dark halo	\sim I - 3 x 10 ¹⁰ M $_{\odot}$
Stellar Mass	$3 \times 10^9 M_{\odot}$
ISM mass, 160 μm	10° M _o
Star formation rate	~0.1 M_{\odot} yr ⁻¹
AGB Mass Loss return	6-13 x 10 ⁻³ M $_{\odot}$ yr ⁻¹
Planetary nebulae Massive stars: Red supergiants, LBV, SNs	~3 x 10⁻² M _☉ yr⁻¹

Spitzer & Supernova

- SN ejecta
 - limited to the near universe (~I0Mpc)
 - inefficient dust formation
- Young SNRs
 - biased to warm (shocked) dust
 - Silicates, oxides & PAH (clusters)

Also Akari, see Seok p43

Rho & Reach et al Barlow et al

Herschel & Supernova

Young SNRs

- warm dust in reverse shock region
- cool dust interior to reverse shock region
- $M_{dust} \sim 0.075 M_{sun}$

The Spectral Richness of Dust

Dust Inventory of the ISM

- Silicates:
 - Amorphous FeMg-silicates
 - Forsterite
 - Enstatite
 - Montmorillonite ?
- Oxides:
 - Corundum
 - Spinel
 - Wuestite
 - Hibonite
 - Rutile
- Sulfides:
 - Magnesium sulfide
 - Iron sulfide ?
- Ices
 - Simple molecules such as H_2O , CH_3OH , CO, CO_2

- Carbides:
 - Silicon carbide
 - Titanium carbide
 - And others
- "Pure" Carbonaceous compounds:
 - Graphite
 - Diamonds
 - Hydrogenated Amorphous Carbon
 - Polycyclic Aromatic Hydrocarbons
 - Fullerenes
- Others:
 - Silicon nitride
 - Metalic iron ??
 - Carbonates ?
 - Silicon/silicon dioxide ??

Oxides Condensation Sequence

- Oxides at low mass loss rates
- Silicates at high mass loss rates
- Freeze out

- Cami, 2001, PhD thesis
- Posch et al., 2002, A&A, 393, L7
- DePew et al., 2006, ApJ, 640, 97
- Sloan & Price, 1998, ApJS, 119, 1411

Spitzer's Contribution

- Systematic studies
- Metallicity dependence with LMC, globular cluster & bulge samples
 - more metals = more dust
 - diversity is everywhere
 - composition not dependent on metallicity
- Larger samples are needed

Sloan et al, 2010, ApJ, 719, 1274 Sage-spec Blommaert et al, in prep

Crystalline Silicates Galore

ISO

- Crystalline silicates
 - Forsterite/enstatite
 - Magnesium-rich
 - Cold
 - Disk sources
- Amorphous silicates
 - Role of iron
- High mass loss rates

Malfait et al. 1998, A&A 332, L25 Molster et al., 2000, A&A 382, 184 Kemper et al, 2004, ApJ 609, 826 Crovisier et al, 1997, Science, 275, 1904

Crystallinity and Grain Growth

Van Boekel et al., 2005, AA, 437, 189 Kessler-Silacci et al., 2006, ApJ, 639, 275

Spitzer's Contribution

- Large systematic samples
- Disks are everywhere: differences & similarities
 - Herbig Ae & Be stars (ISO)
 - T Tauri stars
 - Brown Dwarf disks
- Better characterization of dust composition
 - eg., silica

Sargent et al, 2009, ApJ, 690, 1193; 2009; ApJS, 182, 477 Pascucci et al, 2009, ApJ, 696, 143

The 69 µm Forsterite Band

ISO

Width and peak position are sensitive to composition & temperature

Laboratory-Observations

- Composition: Mg₂SiO₄
- Temperature: <200 K

Koike et al, 2000, A&A 363, 1115

Molster et al, 2002, A&A 382, 184

See also Brusentsova, PI

Herschel's Contribution

Accurate profiles & detailed models

- 'perfect' crystals
- 'pure' forsterite (<few % Fe)
- temperature gradient

Dust Formation in IRC+10216

Herschel & the power of spectroscopy

First PACS + SPIRE Spectroscopic Results

Silicon in the Dust Formation Zone

High J lines of SiO and SiS: Trace dust formation zone SiO : J=11-10 to J=90-89 (E_{up} = 8432 K) SiS: J=26-25 to J = 124-123 (E_{up} = 6678 K)

Silicon in the Dust Formation Zone

Less than 30% of the silicon seems involved

HIFI & Dust Acceleration

Herschel will probe the gas-to-grain process

Decin et al, 2010, A&A, in press

ncredib rici 0 spectrum interstellar PAHs

Peeters et al, 2002, A&A, 390, 1089

PAH Spectral Variations

ISO

- Profile variations
- Strongest for CC modes
- Classes A, B, C
- Classes correlate well for CC modes
- Correspond to object type

Peeters et al, 2002, A&A, 390, 1089

PAHs in Regions of Star Formation

Spitzer

- Variations in the peak position of the 7.7 µm band
 - Aromatic versus aliphatic hydrocarbons
 - N incorporation into rings or clusters
- Active chemistry

Sloan et al 2007, ApJ, 664, 1144 Keller et al, 2008, ApJ, 684, 411 Boersma et al 2009, A&A, 502, 175

PAHs and Herbig Stars

Boersma et al 2009, A&A, 502, 175

'GrandPAHs'

Spitzer

- IR emission spectra are very similar, particular in the "extreme" regions of the ISM
- 15-20 micron region dominated by a few bands (16.4/17.4/17.0 micron)
- Typical PAH will absorb some 10⁸ UV photons over its lifetime. What can break, will break
- Interstellar PAH family dominated by a few, extremely stable species

C₉₆H₂₄

Buckyballs In A Young Planetary Nebula Spitzer Spa NASA / JPL-Caltech / J. Cami (Univ. of Western Ontario/SETI Institute)

Spitzer Space Telescope • IRS ssc2010-06a

See Cami et al, P2

C₆₀ in the ISM

PAHs dominate the spectra but C60 is present as well at 0.3% of the C

Sellgren et al, 2010, ApJ, 722, L54

PAH & Fullerene Chemistry

- Stellar ejecta
 - Fullerenes at ~3500 K
 - PAHs at ~1000 K
- H-poor environments
 - RCrB stars, WC stars
 - vaporizing grain-grain collisions
- UV photochemistry
 - H-loss
 - isomerization

Key Questions

- Where: Origin of Interstellar dust
- What: Inventory of interstellar dust
- How: key processes in its formation and evolution
- When: interstellar dust over the ages
- Why: do we care

Key Questions: ISO & Spitzer Answers

- What: The rich inventory of interstellar dust
- Where: AGB stars (and elsewhere including ISM)
- How: Dust condensation sequence
- When: To be done
- Why: planetary formation & molecular complexity

Key Questions: Herschel's promise

- What: Cold dust in the ISM
- Where: will add supernova remnants
- How: Gas-Grain interaction in AGB ejecta
- When: To be done
- Why: planetary formation & molecular complexity

Dust Inventory: what & where

SOFIA:

- census of stardust injected into the Milky Way
- compare to interstellar dust characteristics
- Volume limited sample of stardust sources in the Milky Way based on GAIA distances

JWST/MIRI:

- census of stardust injected into the Andromeda Galaxy
- Contribution from cannibalized dwarf galaxies
- Dust formation in supernova ejecta

LMC: SAGE & SAGE-Spec

Dust & Gas: How

SOFIA

- Wide spectral coverage & high spectral resolution
- Dust formation & destruction
- Molecular complexity
- Continue where Herschel will leave off

PAHs & Dust Evolution in Protoplanetary Environments

JWST

- Silicates: composition, crystalization and grain growth in the terrestrial zone
- PAHs: Organic inventory & tracing the geometry of the disk

Grain Growth

Dust through the Ages

JWST

Dust composition in extreme environments: quasar (winds), ULIRGS, super star clusters, SNe, high-z

Kemper et al, ApJ, 668, L107

From ISO to Spitzer to Herschel to SOFIA to JWST, the dusty revolution continues