C and H Reactives in Orion KL C+ and Methylidyne CH+ Mapping with HIFI

Pat Morris, NHSC (IPAC/Caltech) J. Pearson, D. Lis, T. Phillips and the HEXOS team and HIFI Calibration team

Orion KL nebula contains one of our nearest (~450 pc) / dearest massive SFRs

BN object, numerous embedded (0.2 pc) IR/radio, hot cores and X-ray sources, luminous IRc2 source with ~900 yr outflow $10^{-3} M_{\odot}$ /yr driven by ~20 M_{\odot} protostar, K/M dwarfs, SiO & methanol masers, at least ~100 probable protostars within ~0.5 pc of the ionizing O7Vp star θ^1 Ori C (binary), ~20 massive OB stars --- something for everyone!

- C+ mapping of Orion KL
 - Intensities, velocities at HIFI's excellent spectral and spatial sensitivities.
 - ¹³C⁺ detections, and the ¹³C/¹²C abundance ratio.
- Early results with CH⁺ mapping observations.
 - Detections, distribution, velocities vs. C⁺
 - "Serendipitous" observations of methanol, tracing hot gas/grain interactions and/or shocks --- contrast with C⁺, shocked H₂ emission

C+in Orion

- [CII] ${}^{2}P_{3/2} {}^{2}P_{1/2}$ cooling line traces distribution of warm (T_g ~350 K) dense (n_H ~ 2x10⁵ cm⁻³) photo-dissociated regions created by UV radiation on the surfaces of GMCs. Intensity scales with PDR density, emission can also originate in shocks from jets/outflow regions.
 - HIFI sensitivity, 12" beam (@ 1900 GHz) provide excellent mapping capabilities, and ~1 km/s spectral resolution (Wide Band Spectrometer):
 - Trace cloud velocity structure and strength of the C+ lines.
 - ^c ¹²C/¹³C ratio to test PDR models for competing effects of chemical fractionation and isotope-selective photodissociation. E.g. Keen et al. (1998) Orion Bar.
 - Several earlier C+ observations in Orion, notably
 - Stacey et al. (1993) KAO Fabry-Perot inner 6'.5 x 10', 44" beam
 - Boreiko & Betz (1996) KAO heterodyne 44" beam, ¹²C⁺/¹³C⁺ ratio near θ¹ Ori C
 - Lerate et al. (2006) ISO/LWS Fabry-Perot, 80" beam centered on/near IRc2

Mapping the storm

HIFI OTF mode (position switch)

CH+: 842 GHz (band 3a) @ Tsys 250 K, 2.5 hr, SSB noise 100 mK C+: 1897 GHz (band 7b) @ Tsys 1600 K, 26 min, SSB noise 500 mK

Some basic features of the HIFI C+ map

13.0

18.0

17.0

16.0

0.93

0.85

0.78

C+ emission is widespread over entire region

- Clumpy, large intensity variations. Velocity field is dominated by main component 7-13 km/s.
- High intensities support PDR model

Higher densities ($n_0 \gtrsim 10^6$ cm⁻³) than estimated for the region and higher velocities required for J shocks to boost emission (e.g. Hollenbach & McKee 1989).

Low (but not lowest) intensities, slowest material around IRc2 outflow source --- diffuse foreground or shock component?. The line profiles reveal nothing obvious about this.

Velocity channel maps ¹³C+

0.64

The 12/13 C ratio

10³

Ļ_{10²}€

 -10^{1}

Ē

CO

С

C¹⁸O

10¹ A,

Keene et al. 1998 ApJ

 $=C^{+}/^{13}C^{+}$

 $C/^{13}C$

 $-C^{18}O/^{13}CO$

 10^{2}

Relative Abundance

Column Density

Column Density Ratio Abundance Ratio

10

10⁻⁸

10¹⁸

10¹⁶

10¹⁴

1.5

1

0.5

0

0.5

0

 C^{+}

Ь

Keene et al. (1998 ApJ) PDR model (using code of Le Berlout et al. 1993, A&A) for Orion Bar region:

- n(H₂) =2.5x10⁴ cm⁻³, T_g = 120 K
- UV field of strength $G_o = 4x10^4$
- abundances from Flower et al. (1995, A&A)
- Total gas-phase isotopic abundance ratios ${}^{12}C/{}^{13}C = 60$ and ${}^{16}O/{}^{18}O = 500$.
- Incorporates chemical fractionation and isotopic-selective photodissociation, mutual- and self-shielding of H_2 and all the CO isotopomers.
- The abundance ratios of ¹²C⁺/¹³C⁺ closely follows that of ¹²C/¹³C, however the column density ratio of ¹²C⁺/¹³C⁺ is *unaffected* by the PDR.
- This is because C⁺ is most abundant *outside* the molecular cloud where it is a majority species and PDR effects on the ratio are negligible.
- The isotopic column density ratio measured in C+ should give the true isotopic gas-phase abundance ratio.

12C + / 13C + ratios

• ${}^{12}C/{}^{13}C$ abundance ratio R can be calculated from the observed ${}^{13}C^{+}/{}^{12}C^{+}$ intensity ratio I_{13}/I_{12} :

$$R = \frac{I_{12}}{\ln \left[1 - \frac{I_{13}}{I_{12}} \left(1 - e^{-\tau_{12}}\right)\right]}$$

* Peak optical depth τ_{12} = 1.3 for the ¹²C⁺ line, based on best fit PDR model with T = 185 K to match O⁰ and C⁺ lines at θ^1 Ori C (Boreiko & Betz 1996 ApJ).

* I_{12} = composite ¹²C⁺ velocity components [-2,+12] km/s. I_{13} = composite F=2 \leftarrow 1, 1 \leftarrow 0, 1 \leftarrow 1 ¹³C⁺ lines.

* Overall agreement with Boreiko & Betz (1998) for θ^1 OriC * Keene et al. (1996) : same for <u>neutral</u> ¹³C/¹²C at Orion Bar. Agreement of isotope ratios from neutral and ionized C indicate fractionation of ¹³C⁺ into ¹³CO at cloud edges is not important, or offset by selective photodissociation of ¹³CO. * Variations at 2 = measurable even the LUEL map. D = 50.60

* Variations at 2σ measurable over the HIFI map, R = 50-60. Optical depth effects, or attenuations by fractionation, photodissociation?

	Location	R (1σ)
	Average	55 (±4)
1	12C+ peak	57 (±4)
2	13C+ peak	50 (±5)
3	IRc2	No 13C+
4	$ heta^1$ Ori C (BB98)	58 (+5/-6)

Activity of the cation CH+ detections in Orion KL

- Chemistry of highly reactive CH+ is not well understood
- Usually correlates with rotational H₂ @ formation in energetic regions.
 - If formed in shocks, should expect velocities different from CH (shock source). So far not the case, and the lowest levels in both CH and CH+ in emission, higher levels are in absorption, which doesn't work very well if CH is reacting with molecular hydrogen.
 - The mean UV field of the ISM is too weak for UV pumping to produce excited H₂. Lab measurements of C⁺ + H₂(v=1) \rightarrow CH⁺ + H may support CH+ formation in PDRs.
 - Turbulence dissipation models may support CH+ formation in the ISM --- talk by E.
 Falgarone.
- CH⁺ J = 1-0 835.137 GHz line mapped with HIFI towards BN/KL. "Serendipitous" CH₃OH and SO₂ also present (same sideband).
 - CH $\Pi^{1/2}$ J = 3/2 $\Pi^{3/2}$ J=3/2 1470/77 GHz fixed observations Orion KL (HEXOS).
 - CH⁺ J = 1-0 and 2-1 (1669.2 GHz) also in W31C, DR21OH, Sgr B2, S140, Orion Bar (PRISMAS, WADI). CH+ J=2-1 absorption observed by Falgarone et al (2005 ApJ).
 - SPIRE FTS observations CH 1470/77 GHz, CH+ 835 GHz in Orion Bar (Naylor et al. 2010 A&A).

CH+ observed properties

- CH+ is widely distributed, peaks at the same location as C+, ~35" NE of BN/IRc2. Also peaks towards θ^1 Ori C.
- One main component: V_{LSR} average = +4.1 km/s, FWHM = 6.2 (±1.5) km/s.

GP CH+ intensities and velocities distributed more smoothly than C+.

There is a very strong contrasting gradient in the distribution of methanol...

Why is CH+ in emission?

 $C^+ + H_2 \rightarrow CH^+ + H$ is highly endothermic, 0.4 eV barrier

CH⁺ vs methanol

- Distribution of methanol is localized to the IRc2 / Compact Ridge region.
- \bigcirc High density hot core region, n(H₂) \sim few 10⁵ 10⁶
- Able to support some C⁺ formation in J shocks?
- Generally anti-correlate.

Summarizing

- C⁺ is everywhere present in Orion KL in a clumpy distribution, several velocity components.
 - Weak around the BN/IRc2/compact ridge complex.
 - Overall consistent with KAO, ISO results.
- 13C+ multiplet lines detected
 - ¹³C⁺/¹²C⁺ intensity ratios yield abundances in line on average with estimates around Orion Bar and θ¹ Ori C, R ≈ 55 ⁽³⁷⁾ Fractionation of ¹³C⁺ into ¹³CO is weak or compensated by photodissociation of ¹³CO.
 - Variations (2 σ) are noticed, we should improve τ_{12} estimates with line fitting.

- CH⁺ is (more) smoothly distributed in intensity and velocity, always emission.
- Peaks at the C+ peak, and close to θ^1 Ori C .
- Also weak around the IRc2 complex (favors PDR formation).
- Need to combine with CH measurements.
- Methanol emission is significant only around the IRc2 complex, tracing highest density regions.

Congratulations SF Giants!