

Fighting to Survive: PAHs in the Stormy Cosmos

Elisabetta R. Micelotta

CRESST/USRA/NASA Goddard Space Flight Center

A. Tielens (Leiden Observatory, The Netherlands)A. Jones (IAS Orsay, France)

Stormy Cosmos

1-4 November 2010, Pasadena, CA

PAH collisions with ions/electrons

Number ejected C-atoms → PAH destruction level

Interstellar Shocks:

Inertial motion: E = 10 eV - 10 keV Thermal motion: E = 5 - 50 eV

Protection and/or reformation required

PAH evolution

Random removal of carbon atoms

Micelotta et al. 2010a

Hot Gas:

Temperature of gas: $T = 10^5 - 10^8 K$ Thermal motion: E = 10 eV - 10 keV

(Rate constant) x density = ejection rate

Red = Spitzer IRAC 8.0 μm Green/Orange = optical Blue = Chandra.

PAH lifetime: solar neighborhood

PAH lifetime: galactic wind

Physics of collisional processing

N_c = 50 C-atoms v_s < 100 km/s denaturation
$$\begin{split} N_c &= 50 \text{ C-atoms} \\ \textbf{v}_s &\geq \textbf{100 km/s \& hot gas} \\ \textbf{complete destruction by} \\ \textbf{thermal electrons} \end{split}$$

Cosmic Rays destruction by inelastic coll. with ions

Astrophysical implications

Inter-cloud ISM Small PAHs destruction by Cosmic Rays Inter-cloud ISM Larger PAHs destruction by shocks

Protected PAHs

lifetime set by Cosmic Rays & X-rays

Re-formation mechanism required Which one?

 $T_{PAH} < T_{inj}$

Perspectives

PAHs in the ISM: **origin?** From PAHs to grains: **filling the gap**

Micelotta et al. 2010a, A&A, 510, A36 Micelotta et al. 2010b, A&A, 510, A37 Micelotta et al. 2010c, A&A, in press

Thank you!