

Galactic Observations of Terahertz C⁺ (GOT C⁺): Cll Detection of "Hidden" H₂ in the ISM

Bill Langer

C+ Team: P. Goldsmith, D. Li, J. Pineda, T. Velusamy, & H. Yorke Developulsion Laboratory, California Institute of Technology November 2, 2010

got C+?

Copyright 2010 California Institute of Technology. Government sponsorship acknowledged

Atomic to Molecular Gas Clouds

HI, CII, CI, and CO, track the evolution of clouds from the diffuse to dense state

- Diffuse Atomic Clouds
 Warm, low density HI & CII
- Transition Clouds a phase with H₂ and CII, but little or no CI & CO.
- Dense Molecular Clouds H_2 is traced by CO

We are missing a critical stage of cloud evolution without CII

l(deg.)

Evolution of HI and CII

PDR Model

From COBE & BICE to Herschel HIFI

- CII strongest Galactic far-IR line
- COBE 7° beam & ΔV ~ 10³ km/s
- BICE 15' beam & ΔV ~ 175 km/s
- COBE widespread distribution of CII in the Galactic plane
- BICE inner Galaxy distribution.

Herschel HIFI has the spectral (<0.5 km/s) and spatial resolution (12") to study individual clouds.

350° < / < 30° & |b| < 3°

BICE and IRAS

GOT C+ Samples CII throughout the Galactic Plane

Galactic Plane Survey - systematic volume weighted sample of 500 l.o.s. in the disk

 $- I (0^{\circ} - 360^{\circ})$ at $b = 0^{\circ}$, +/- 0.5° & 1°

Galactic Central Region: CII strip maps at 360 positions in on the fly (OTF) mapping mode.

Over 360 los observed to date.

NASA

GOT C+ First Results

One of 16 LOS taken in the PSP & PVP phase located along / =345°

GOT C+ First Results

GOT C+ First Results: Statistics

- Detected 146 CII features in first 16 LOS
 - 35 no ¹²CO Diffuse atomic & molecular clouds (Langer et al. 2010)
 - 53 with ¹²CO, but no ¹³CO Transition clouds (Velusamy et al. 2010)
 - 58 with ¹²CO & ¹³CO Dense Molecular Clouds (Pineda et al. 2010)
 - 12 of these with $C^{18}O$ Dense Cores

Complete GOT C+ survey will intersect thousands of clouds and allow a statistical study of ISM conditions in various Galactic environments.

H₂ in Diffuse Clouds

 $I(CII) = I(CII,HI) + I(CII,H_2) (K km/s)$

$$\begin{split} I(CII) &= f(n_{HI}, T_K) N(C^+)_{HI} + f(n_{H2}, T_K) N(C^+)_{H2} \\ f &= CII \text{ excitation} \\ \text{Use HI to estimate I}(CII, HI) \\ \text{Calculate N}(H_2) \text{ as } f(n, T) \\ \text{Details in Langer et al. 2010} \end{split}$$

- Many clouds have excess C⁺ not readily explained as coming from an HI layer
- Need very warm, dense gas to explain
 I(CII) as coming just from HI cloud or layer
- CII traces warm ($T_{kin} > 30K$) "hidden" H_2 .
- Diffuse clouds or edges of dense clouds?

Transitional Molecular Clouds: CII + ¹²CO

- Analysis of CII versus HI and ¹²CO reveals excess C⁺ that traces a warm "hidden" H₂ cloud layer.
- Comparing mass traced by CII and CO, on average, ~25% of the mass is in the C⁺ layer in agreement with models (e.g. Wolfire et al. 2010).
- Velusamy et al. (2010) for details.
- (a) The line is a fit for I(CII) vs. I(HI) in "nominal" HI clouds. I(CII) above this line arises from C⁺ in the H₂ layer surrounding $a^{12}CO$ core.
- (b) Excess I(CII) plotted against I(¹²CO). The line is a fit to I(CII) from "nominal" clouds containing about 15% of the total H_2 in the H_2/C^+ layer. Clouds with larger H_2 envelopes lie above this line.

Constraining n, T, and G_{FUV}

- Constrain [n, T,G_{FUV}] (G_{FUV} the intensity of the FUV field), with cloud models including: chemistry, thermal properties, radiative transfer of UV in and sub-mm and far-IR out
- ¹²CO provides an important constraint: C⁺ has converted to CO and we can calculate extinction to the C⁺-C^o-CO transition

Detection thresholds for ¹²CO, ¹³CO, C¹⁸O based on chemicalcloud models (Visser et al. 2009).

- Additional observations of CI and CO(J>3) in transition zone, can provides tight constraints (n,T,G_{FUV})
- Otherwise, use thermal models to estimate (n,T) in the HI and H₂ layers and get indirect, but looser, constraints.

Cloud Models

- Several time dependent codes available & under development
 - Smooth density models e.g. Meudon code, Visser and Glover models, PDR models of Tielens, Hollenbach, Kaufman, & Wolfire
 - Clumpy models e.g. KOSMA-TAU code (Cologne group and Sternberg)
- In all cases one needs to develop a grid of models as a function of parameters to search for the best solution for each cloud.
- We have used a simple model to estimate the cloud conditions

- Simple chemical model for C⁺ to CO
- Heating: UV + grain & PAHs; C.R. ionization
- Cooling: CII emission
- Iterate on G₀(FUV) until match I(CII) and I(CO)

- Set of solutions using simple thermal and chemical models
- More exact modeling with cloud-chemical models is underway using the Meudon and KOSMA-TAU codes.

PDRs in Dense Molecular Clouds

- Adding CI & CO(J \geq 3) better constrains n, T, G_{FUV}, in PDRs
- 4 LOS observed in CI (609 $\mu m)$ and CO(4-3) at NANTEN2
- 21 CII components have associated CI and CO emission

Summary

- Detected 146 CII features in 16 LOS (335° 25°), out of 900 planned LOS; 350 LOS observed to date
 - 35 HI and no ¹²CO Diffuse atomic & molecular clouds
 - 53 HI, ¹²CO, but no ¹³CO Transition clouds
 - 58 ¹²CO and ¹³CO PDRs, a few of which have C¹⁸O on the line of sight
- Results
 - Significant amount of warm H_2 in diffuse and transition clouds
 - Fraction of H_2 in dense clouds observable only in CII warm "hidden" $H_2 \sim 25\%$
 - 44% of I(CII) comes from warm, dense PDRs, rest diffuse and transition clouds
 - PDRs observed in CII, CI, CO show high n (>10^4 cm^{-3}) and G_{FUV} <100G_D
 - Three papers published in the A&A HIFI Special Issue
- These early results show great promise for using CII 158 μ m line to study the H₂ gas in the UV radiated portion of clouds.
- A larger cloud sample on completion of the GOT C+ Disk survey will:
 - Trace the evolutionary status of transition clouds and their role in the ISM
 - Characterize PDRs in star forming environments.
 - Provide an estimation of the fraction of [CII] emission tracing star formation

