Diagnostics of Molecular Shocks: From YSOs to SNe

Michael Kaufman San Jose State University With J. Franklin, G. Melnick, D. Neufeld, D. Hollenbach, R. Snell

Outline

- Refresher on inputs and outputs
- Observations of shocks in a SNR
- Observations of shocks in star forming regions
- Detection of O₂from shocks?
- Going forward

Shocks: What Good Are They?

- Chemical laboratories: test predictions, especially endothermic reactions and those with barriers
- Allow direct measurements of abundances: e.g. warm CO vs. warm H₂
- Intense line emission (incl. dynamical info)
- Generally large line/continuum

J-Shock Physics

Hollenbach & McKee 1989

- Post-shock: T>10⁴ K
- Collisional dissociation of H₂
- UV continuum emission
- T ~ 500 K plateau from H₂ formation heating
- H₂ pure rotational: thermal
- H₂ vibrational: formation pumped, "weak"
- IR emission from OI, ionized gas (e.g. FeII, SiII), molecules

C-Shock Physics

- Low ionization fraction: ions and neutrals behave as weakly-interacting fluids
- $v_{Ai} > v_{bulk motion}$: subsonic in the ions
- $v_{An} < v_{bulk motion}$: supersonic in the neutrals
- Ions never shock, so they can drag neutrals through what would normally be a discontinuity
- As long as neutral gas can cool efficiently, these conditions are maintained and "shock" is continuous
- Molecular gas stays molecular up to 4000 K!

C-Shock Emission Lines

Parameter Space

Gas Density

Draine & McKee 1993

Shock Velocity

Example: IC443 SNR

- Strong H₂ 2 & 12μm: emission from ~2000K gas
- Ram pressure ~ 10⁷ cm⁻³ (km/s)²
- HI
- Strong OI 63 μm
- Strong CII 158 μ m

H₂ 1-0S(1) Richter 1995

SWAS: IC443 SNR

1 pc

IC443C

H₂O 557 GHz CI 492 GHz ¹³CO 5-4 from SWAS

CO J=1-0 FCRAO Snell et al. 2005

SWAS H₂O in IC443

- Beam-averaged H₂O column in effectively-thin limit (τ >>1, n<<n_{cr}) N(H₂O) $\propto \int Tdv/nC_{lu} \sim 2-4x10^{13} \text{ cm}^{-2}$
- High res (spatial and spectral) CO
 - Measure H_2O/CO assuming water has same spatial distribution as CO and fitting $n,T,N_{peak}(H_2O) \sim 3x10^{14} \text{ cm}^{-2}$ $H_2O/CO \sim 10^{-3}$

ISO Observations

- H₂O, OH, and high-J CO
- 4_{14} - 3_{13} /H₂ 2µm ~ 0.04 (Models: > 0.3)
- H₂O/OH ~0.1 as in 3C 391(Reach & Rho 1998): H₂O dissociated by UV?

IC443 Observation Summary

- Ram pressure ~ 10^7 cm⁻³ (km/s)²
- Strong H_2 2 &12 μ m : emission from 2000 K gas Fast C/Slow J
- HI Fast J
- Strong OI 63µm Fast J/Slow C
- Strong CII 158µm Fast J
- Low N(H₂O) Fast J/Slow C
- H_2O/OH low UV?
- H_2O/H_2 low Freeze out?

Two Shock Model

- 1 Fast-J (~100 km/s) in inter-clump gas, n~10³: OI, CII, HI and FUV radiation ~1-10 times typical interstellar value
- 2 Slow C with x~10⁻⁵, n~10⁵ in clumps: Maximum speed of 12 km/s!
 - H₂O suppressed by FUV dissociation once T < 300 K
 - In addition, about 1/2 of available OI must be frozen out preshock ==> slow shock so ice isn't sputtered off grains!

IC443 with Spitzer/IRS

Neufeld et al. 2007

PC Analysis

Basis set to characterize spatial variations in the maps

Molecular emission distinct from regions producing fine structure ionic emission

==> Multiple shocks?

Observations of YSO Outflows

SWAS: Franklin et al. 2008

- 17 Sources, both high and low mass
- High spectral resolution H₂O 557 GHz, CO J=1-0, ¹³CO J=1-0
- Compare gas masses as a function of velocity

Water abundance per velocity

Source		V_{I}	$(\rm km \ s^{-1})$	H_2O (10^{-20})	Line Flux ^a W cm ^{-2})	$\begin{array}{llllllllllllllllllllllllllllllllllll$	H_2O Abundance ^b
	L1157	Blue	$\textbf{-13.5}\rightarrow$	1.5	1.84(0.06)	4.1×10^{-1}	8.0×10^{-6}
		Red	$4.0 \rightarrow 2$	29.0	$1.58 \ (0.08)$	$3.2{ imes}10^{-1}$	9.7×10^{-6}
	L1157	Blue	$-3.5 \rightarrow$	1.5	0.86(0.04)	2.8×10^{-1}	5.3×10^{-6}
			$-8.5 \rightarrow$	-3.5	0.58(0.04)	1.9×10^{-2}	4.9×10^{-5}
			-13.5 \rightarrow	-8.5	0.40(0.04)	3.9×10^{-3}	3.5×10^{-4}
		Red	$4.0 \rightarrow$	9.0	0.59(0.04)	2.9×10^{-1}	3.8×10^{-6}
			$9.0 \rightarrow$	14.0	0.37~(0.04)	5.2×10^{-2}	1.3×10^{-5}
			$14.0 \rightarrow$	19.0	0.28(0.04)	3.6×10^{-2}	1.5×10^{-5}
			$19.0 \rightarrow$	24.0	$0.16\ (0.04)$	2.0×10^{-2}	1.6×10^{-5}
			$24.0 \rightarrow$	29.0	0.18(0.04)	7.0×10^{-3}	5.2×10^{-5}

ISO Observations of L1157

- Detections of H₂O 179μm and CO J=20-19, J=15-14
- CO line ratio: temperature \rightarrow v ~ 30 km/s
- CO J=15-14/179 μ m: density \rightarrow n ~ 10⁵ cm⁻³
- Solid angle required to match emission is tiny ~ 10 arcsec²
- Only 5x10⁻³ M_☉, about 1% of outflow mass, has been shocked sufficiently to drive up H₂O abundance

Shocked H₂O Mapped in 1157

Nisini et al. 2010

25% of shock cooling in H_2O lines

Spitzer Observations of NGC2071: Spatial Information

Separation of J and C Tracers

Shocked H₂ in Orion

Bow Shocks in Orion

Orion KL CISCO (H2 (v=1-0 S(1)) - Cont) Subaru Telescope, National Astronomical Observatory of Japan January 28, 1999

Kristensen et al. 2008

2010

HOP O₂ Emission Lines: Pk 1

Low Velocity Shocks Are Better For O₂

V = 40 km/s $T_{max} \sim 3000 \text{ K}$ $N(O_2) \sim 4x10^{13}$

V = 10 km/s $T_{max} \sim 400 \text{ K}$ $N(O_2) \sim 10^{16}$

O₂ Column Density in C-Shocks

O₂ Line Intensities

Conclusions

- Shocks come in two basic types
- Rarely is a single planar shock the answer → admixtures, including non-standard initial conditions, are more likely
- Chemical signatures of different shocks give them away
- The chemistry of H₂O and O₂ keeps getting more interesting.....