Oxygen Chemistry in Molecular Clouds D. Hollenbach SETI Institute

H_2O, O_2 and Water Ice

M. Kaufman San Jose State University
E. Bergin University of Michigan
G. Melnick Harvard University
Hollenbach, Kaufman, Bergin & Melnick (2009)

OH^+ , H_2O^+ , and H_3O^+

M. Kaufman D. Neufeld M. Wolfire San Jose State University John Hopkins University University of Maryland

I. Introduction: The Story of O

- 1. Oxygen is the third most abundant element in the universe $x_0 = O/H \sim 5x10^{-4}$ $x_C = C/H \sim 3x10^{-4}$
- Abundant molecules with O (such as CO, O₂, H₂O) can be important in cooling molecular clouds (Goldsmith & Langer 1978), and are therefore important in understanding star formation.
- 3. To date, there have been mysteries around the basic astrochemistry of O.
 - a. Why are observed abundances of O_2 and H_2O so low?
 - b. Where is the elemental O?
 - c. What are cosmic ray ionization rates?
- 4. If we cannot understand basic O chemistry, we are in terrible shape for understanding the chemistry of clouds.

II. H₂O, O₂, and Water Ice (Hollenbach et al 2009)
Summary of Observations (SWAS, Odin, and Herschel) in ambient (unshocked) molecular clouds

 $x(H_2O) \sim 10^{-8}$ $N(H_2O) \sim 10^{15} \text{ cm}^{-2}$

 $x(O_2) \le 3x10^{-8}$ $N(O_2) \le 3x10^{15} \text{ cm}^{-2}$

Water Ice threshold at $A_V \sim 3$

Gas phase chemical models of molecular clouds predicted H_2O and O_2 abundances higher by factors of ~100.

II. H_2O , O_2 , and Water Ice (Hollenbach et al 2009)

Chemistry

Gas phase chemistry

Freezing, grain surface chemistry and desorption

$$O \xrightarrow{\text{grain}} O_{\text{ice}} \xrightarrow{H} OH_{\text{ice}} \xrightarrow{H} H_2O_{\text{ice}} \xrightarrow{H} OH_{\text{ice}} \xrightarrow{H} H_2O_{\text{ice}} \xrightarrow{H} H_2O_{\text{ice}} \xrightarrow{I} Y \xrightarrow{I$$

II.

Bottom Lines: 1. $N(H_2O) \sim N(O_2) \sim 10^{15}$ cm⁻² independent of FUV and n

2. Matches observations of diffuse clouds, molecular clouds, ice thresholds

3. Predicts in certain cases interior regions with gas phase C greater than O

III. OH⁺, H_2O^+ , and H_3O^+ (in progress)

Summary of observations by Herschel

Diffuse Clouds (cm⁻²) N(OH⁺) ~ $3x10^{12}$ - 10^{14} N(H₂O⁺)~ 10^{12} - 10^{13} N(H₃O⁺)~ 10^{12} - 10^{13}

Molecular Clouds/PDRs $N(OH^+) \sim 10^{13} \text{ (cm}^{-2})$ $N(H_2O^+) \sim 10^{13}$ $N(H_3O^+) \le 10^{13}$

OH⁺ and H₂O⁺ abundances peak in atomic region of PDR. In this region, $x(e) \sim x(C^+) \sim 10^{-4}$.

If $x(H_2) \le 0.01$, $x(OH^+) = \alpha = (\zeta_{cr}/n)x(H_2)$

If $x(H_2) \ge 0.01$, $x(OH^+) \propto (\zeta_{cr}/n)[x(H_2)]^{-1}$

See also Neufeld et al 2010 (found $\zeta_{cr} \sim 10^{-16} \text{ s}^{-1}$ for diffuse clouds toward W49).

 $\zeta_{\rm cr} = 10^{-16} \, {\rm s}^{-1}$

Upper right hand corner distorted by chemical production of H⁺

Chemical Production of H⁺

- 1. Via OH
 - $H_2 + O \rightarrow OH + H (requires high T and n)$ $OH + C^+ \rightarrow CO^+ + H$ $CO^+ + H \rightarrow CO + H^+$
- 2. Via CH⁺

 $\begin{array}{ccc} C^+ + H_2 & \twoheadrightarrow & CH^+ + H \text{ (requires high T and n)} \\ CH^+ + FUV & \longrightarrow & C & + & H^+ \end{array}$

Note that N(OH⁺) and N(H₂O⁺) are proportional to ζ_{cr} .

IV. Summary

1. Steady state models with freezing, desorption give low columns ~ 10^{15} cm⁻² of H₂O and O₂ in ambient molecular clouds (not the shocked regions or regions of exceptionally high H ionization or regions of high T_{dust} > 100 K!).

2. Observed columns of OH⁺ and H₂O+ constrain the cosmic ray ionization rate (N $\alpha \zeta_{cr}/n$) in diffuse clouds and on the surfaces of molecular clouds. Abundances peak at x(H₂ ~ 0.01). Caveats are:

a. Geometry (both sides? Edge on?)

- b. Need to know density ([CII] and [OI]?)
- c. Not true for high FUV field and density
- d. Time dependent effects

3. H_3O^+ is more complicated because of possible second peak deep in cloud where O is still abundant, but e not.