The Violent Evolution of Supernovae in Molecular Clouds

John W. Hewitt (NASA/Goddard) R. Petre, J. Rho, W.T. Reach, M.A. Andersen, J.P. Bernard

W44, enveloped by a molecular cloud Radiative signatures:

 IR-bright => shock cooling in relatively dense gas (>10³ cm⁻³)

W44, enveloped by a molecular cloud Radiative signatures:

- IR-bright => shock cooling in relatively dense gas (>10³ cm⁻³)
- Broad molecular lines (eg. CO 2-1)

W44, enveloped by a molecular cloud Radiative signatures:

- IR-bright => shock cooling in relatively dense gas (>10³ cm⁻³)
- Broad molecular lines (eg. CO 2-1)
- OH(1720 MHz) Masers

W44, enveloped by a molecular cloud Radiative signatures:

- IR-bright => shock cooling in relatively dense gas (>10³ cm⁻³)
- Broad molecular lines (eg. CO 2-1)
- OH(1720 MHz) Masers

Catalog of SNR/MCs (Jiang et al. 2009)

- 34 confirmed (24 w/Masers)
- 11 probable

• <u>19 possible</u>

64 of 274 Galactic SNRs (~23%) expect ~40% of SNe in field

Recent IR surveys have made the largest contribution

- Spitzer GLIMPSE survey detected 18 IR-bright SNRs
- Colors hint at dominant cooling lines and shock type.

- Spitzer GLIMPSE survey detected 18 IR-bright SNRs
- Colors hint at dominant cooling lines and shock type.

However...

Color-typing shows large scatter, even within the same SNR

IR spectroscopy is clearly needed

Spitzer 5 to 95 µm Spectroscopy

- . brightest IR clumps in 14 SNRs
- . long-slit: remove Galactic emission

Hewitt et al. 2009, Andersen et al. (submitted) Complements IRS mapping 4 SNRs (Neufeld et al.) Must explain mix of IR lines: H₂ S(0)-S(7) [Fe II], [Ne II], [Si II], [S III] PAHs, Dust continuum

H₂ Excitation in Kes 69

over-pressure in warm, dense clumps

H₂ Excitation: Ortho-to-Para

warm H₂: OPR ~ 0.4-3 equilibrium: OPR_{LTE} ~ 3

Para-to-ortho H₂ conversion via reactions with atomic-H:

 $\tau_{conv} \approx 3000 \text{ yrs} [100 \text{ cm}^{-3}/n(\text{H})]$ E_A/k ~ 4000 K

=> slow C-shocks into cold, quiescent clouds; no significant pre-heating of MC

see also Yuan Yuan's poster #15

Fast, Dissociative Shocks

Shocks into multi-phase Molecular Clouds

How to reconcile different IR lines? **Atomic Gas** multiple shocks in a multi-phase medium Shocks into Multi-phase Molecular Clouds Parameter Atomic Molecular Clump **SNR interior** Fe^+ , Ne^+ , Si^+ Tracer H_2 , [O I] H_2 , BMLs 2×10^{4} Density, n_0 (cm⁻³) 5 - 25200Velocity, V_S (km s⁻¹) 50010025 $p_{ram} (10^{-8} \text{ dyne cm}^{-2})$ 3 520**Dense Clump** Compression 4 1010 10^{-4} Fill factor, f0.10.9Mass (M_{\odot}) 800 5000 300**Reflected shock** (Chevalier 1999, Cox et al. 1999, Reach et al. 2005)

Dust Emission from SNRs

Dust continuum modeling (DUSTEM, Campiegne et al. 2008, Poster #35) Parameters: Big Grains, Very Small Grains, PAHs, and Radiation Field 0.01-0.2 μm 0.001-0.01μm

Dust Processing by SNR shocks

Shattering in dense/slow shocks, destroys BGs, but not VSG/PAHs

Observe VSG/BG consistent with shattering, increasing with V_{S}

Dust Heating by SNR shocks

Above assumes radiative field is = ISRF

SNRs have even higher UV radiation from H-recomb (fast shocks, [Fe II])

Dust Heating by SNR shocks

Fit Radiation Field, case B H-recomb. (normalized to ISRF)

Radiative Cooling: SNR/MCs

L_{H2} is only ~0.6-6% of L_{Dust} in SNR/MCs

[O I] 63 μ m line detected in 10/14 SNRs, L_[OI]/L_{Dust} ~ 1-7%

NASA's Fermi telescope resolves supernova remnants at GeV energies

Young SNR Maser-emitting SNRs Description

Cas A

W44

γ-ray emission from SNR/MC IC 443

Extended TeV/GeV source detected, coincident with CO peak

Spectral fitting using leptonic (inverse Compton + Bremsstrahlung) and hadronic (pion decay) $Wp = 0.5-2.2x10^{49} \text{ erg} (\sim 1\% \text{ E}_{SN})$ $n_Y = 60-240 \text{ cm}^{-3}$

Consistent with enhanced CR density ~100 in the adjacent molecular cloud.

Parameter	Atomic	Molecular	Clump
Density, $n_0 \ (\mathrm{cm}^{-3})$	$5-25 \\ 0.9 \\ 800$	200	2×10^4
Fill factor, f		0.1	10^{-4}
Mass (M_{\odot})		5000	300

Caveat: bulk of ionizing by MeV CRs, not GeV CRs measured by *Fermi*

Fermi y-ray detections of SNR/MCs

Maser SNR subset: interaction, distance, cloud mass, *n*=10⁵ cm⁻³
•For π⁰-decay origin (Drury et al. 1994)

 $F_{\gamma} \sim M_{cloud} d_{kpc}^{-2} \omega_{CR}$

•Given M_{cloud} , d_{kpc} : determines CR ionization rate $\zeta_{CR} \approx \omega_{CR} \zeta_{local}$

SNR	Distance (kpc)	$\stackrel{\rm M_{cloud}}{(10^5~M_{\odot})}$	$F_{\gamma}(>100 \text{ MeV})$ $(10^{-8} \text{ cm}^{-2} \text{ s}^{-1})$	$\zeta_{CR} \ (10^{-16} \ \mathrm{s}^{-1})$
W28	2.0	0.5	74.2	3.4
W44	2.5	3.0	88.9	1.1
W51 C	6.0	1.9	40.9	4.4
IC 443	1.5	0.1	51.4	5.5

•Maser SNRs have $\omega_{CR} \sim 10-50$ enhanced over local density

•Significant ionization, >10⁻¹⁶ s⁻¹ enhances *n*(H,e)/*n*(H₂) in C-shocks

12/24 SNRs detected by Fermi

non-detections (eg, Kes69, G16.7) explained by low [M_{CO} d⁻²]

Chemical tracers of CR ionization in SNRs: fertile ground for Herschel/SOFIA observations

SOFIA Observations of Shocks/PDRs

SOFIA Future Proposal Calls

New SOFIA Instrument Proposal Call

• Asilomar Conference (Jun 7-9, 2010): New science instrument Opportunity (formal AO call expected next Spring)

http://www.sofia.usra.edu/Science/workshops/asilomar.html

• International partnership and opportunity to propose new instruments (after Herschel) for follow-up science: a new instrument can be built and available within 2-4 years.

Next Science Proposal Call

- Autumn of 2011: open to all astronomers in the world
- Data Analysis funding is available for US Investigators
- FORCAST (mid-IR camera) and GREAT (similar to Hi-Fi): fully commissioned
- One or more new instruments will be likely available (HIPO/FLITCAM/HAWK)

Prepared by J. Rho (SOFIA Science Center)

The violent lives of Supernova Remnants

SNR shocks are a spectacular probe of molecular clouds

- Multiple shocks, through a multi-phase cloud trace thermal history of the cloud (OPR)
- Radiative cooling: dust continuum, IR lines
- Enhanced radiation field ~20-100 x ISRF evidenced by Dust heating, H₂ UV excitation
- Grain processing: shattering decreases large grain size
- Accelerate cosmic rays yielding up to few % ESN

Future directions

Processing of PAHs, small grains. Non-equilibrium chemistry, driven by enhanced ionization? Cosmic Ray escape/diffusion in ISM